Abstract

Films of oriented bacteriorhodopsin have been formed in polyvinyl alcohol with excellent optical quality. Images with high contrast have been impressed and erased on these films. Second-harmonic microscopy has been used to read the image on a bacteriorhodopsin–polyvinyl alcohol film without erasure. The potential of these films for molecular information storage and computation is discussed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Carter, ed., Molecular Electronic Devices (Dekker, New York, 1982, Vol. 1;Molecular Electronic Devices1988, Vol. 2).
  2. M. Ottolenghi, “The photochemistry of rhodopsins,” Adv. Photochem. 12, 97–200 (1980).
    [Crossref]
  3. C. Mobarry, A. Lewis, “Implementations of neural networks using photoactivated conducting biological materials,” presented at the 1986 International Optical Computing ConferenceJerusalem, 1986.
  4. Z. Chen, H. Takei, A. Lewis, “Optical implementations of neural networks with wavelength-encoded bipolar weight using bacteriorhodopsin,” presented at the International Joint Conference on Neural Networks, San Diego, California, 1990.
  5. D. Haronian, A. Lewis, “Elements of a unique bacteriorhodopsin neural network architecture,” Appl. Opt. 30, 597–608 (1991).
    [Crossref] [PubMed]
  6. G. Rayfields, “Bacteriorhodopsin as an ultrafast electrooptic material,” Phys. Bull. 34, 483 (1989).
  7. N. N. Vsebolodov, G. R. Ivanitsky, “Biological photosensory complexes as technical information carriers,” Biofizika 30, 883–887 (1985).
  8. N. N. Vsevolodov, V. A. Poltoratski, “Holograms in biochrome, a biological photochromic material,” Sov. Phys. Tech. Phys. 30, 1235 (1985).
  9. A. Lewis, V. del Priore, “The biophysics of visual photoreception,” Phys. Today 41(1), 38–46 (1988).
    [Crossref]
  10. R. R. Birge, C. F. Zhang, A. L. Lawrence, “Optimal random access memory based on bacteriorhodopsin,” in Proceedings of the Fine Particle Society (Fine Particle Society, Santa Clara, Calif.1988).
  11. R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, C. V. Shank, “Direct observation of the femotosecond excited-state cis–trans isomerization in bacteriorhodopsin,” Science 240, 777–000 (1988).
    [Crossref] [PubMed]
  12. W. V. Sherman, R. C. Eicke, S. R. Stafford, F. W. Wasacz, “Branching in the bacteriorhodopsin photochemical cycle,” Photochem. Photobiol. 30, 727–729 (1979).
    [Crossref]
  13. R. Korenstein, B. Hess, “Hydration effect on the photocycle of bacteriorhodopsin in thin layers of purple membrane,” Nature (London) 270, 184–186 (1977).
    [Crossref]
  14. R. Korenstein, W. V. Sherman, S. R. Caplan, “Kinetic isotope effects in the photochemical cycle of bacteriorhodopsin,” Biophys. Struct. Mech. 2, 267–276 (1976).
    [Crossref] [PubMed]
  15. B. Becher, T. G. Ebrey, “The quantum efficiency for the photochemical conversion of the purple membrane protein,” Biophys. J. 17, 185–191 (1977).
    [Crossref] [PubMed]
  16. G. Varo, L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium Halobium,” Biophys. J. 43, 47–51 (1983).
    [Crossref] [PubMed]
  17. M. A. Marcus, A. Lewis, E. Racker, H. Crespi, “Physiological and structure investigations of bacteriorhodopsin analogs,” Biochem. Biophys. Res. Commun. 78, 669–675 (1977).
    [Crossref] [PubMed]
  18. M. A. Gilles-Gonsales, N. R. Hackett, S. J. Jones, H. G. Khorana, D. S. Lee, K. M. Lo, J. M. Mccoy, “Methods for Mutagenesis of the Bacteriorhodopsin Gene,” Methods Enzymol. 125, 190–214 (1985).
    [Crossref]
  19. N. R. Hackett, L. J. Stern, B. H. Chao, K. A. Kronis, H. G. Khorana, “Structure-function studies on bacteriorhodopsin,” J. Biol. Chem. 262, 9277–9284 (1987).
    [PubMed]
  20. J. Y. Huang, Z. Chen, A. Lewis, “Second-harmonic generation in purple membrane-poly (vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in BR and M,” J. Phys. Chem. 93, 3314–3320 (1989).
    [Crossref]
  21. D. Oesterhelt, W. Stockenius, “Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane,” Methods Enzymol. 31, 667–678 (1974).
    [Crossref] [PubMed]
  22. D. Oesterhelt, B. Hess, “Reversible photolysis of the purple complex in the purple membrane of Halobacterium Halobium,” Eur. J. Biochem. 37, 316–326 (1973).
    [Crossref] [PubMed]
  23. M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).
    [Crossref] [PubMed]
  24. N. Hamp, C. Branche, D. Oesterhelt, “Bacteriorhodopsin wild type and variant aspartate—96→ asparagine as reversible holographic media,” Biophys. J. 58, 83–91 (1990).
    [Crossref]
  25. O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, “Saturable absorption, wave mixing and phase conjugation with bacteriorhodopsin,” Opt. Lett. 18, 1117–1119 (1990).
    [Crossref]
  26. G. Varo, “Dried oriented purple membrane samples,” Acta. Biol. Hung. 32, 301–310 (1981).
  27. L. Keszthelyi, P. Ormos, G. Varo, “Fast components of the electrical response signal of bacteriorhodopsin protein,” Acta Phys. Hung. 53, 143–151 (1982).
    [Crossref]
  28. Z. Dancshazy, B. Karvaly, “Incorporation of bacteriorhodopsin into a bilayer lipid membrane; a photoelectric-spectroscopic,” FEBS Lett. 72, 136–138 (1976).
    [Crossref] [PubMed]
  29. M. Eisenbach, C. Weissmann, G. Tanny, R. Caplan, “Bacteriorhodopsin-loaded charged synthetic membranes,” FEBS Lett. 81, 77–80 (1980).
    [Crossref]
  30. K. A. Fisher, K. Yanagimoto, W. Stoekenius, “Oriented adsorption of purple membrane to cationic surfaces,” J. Cell Biol. 77, 611–621 (1978).
    [Crossref] [PubMed]
  31. S. B. Huang, J. I. Korenbrot, W. Stoeckenius, “Structural and spectroscopic characteristics of bacteriorhodopsin in airwater interfacial films,” J. Membr. Biol. 36, 115–135 (1977).
    [Crossref]
  32. T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir-Blodgett films,” Thin Solid Films 160, 145–151 (1988).
    [Crossref]
  33. C. A. Finch, Properties and Applications of Polyvinyl Alcohol (Wiley, New York, 1973).
  34. T. R. N. Kutty, A. G. Fischer, “Planar orientation of nematic liquid crystals by chemisorbed polyvinyl alcohol surface layer,” Mol. Cryst. Liq. Cryst. 99, 301–318 (1983).
    [Crossref]
  35. S. Kunugi, K. Tatsukawa, T. Nakajima, A. Nomura, A. Tanaka, “Orientation of bacteriorhodopsin in non-aqueous polymer membrane,” Polym. Bull. 21, 59–62 (1989).
    [Crossref]
  36. O. A. Aktsipetrov, N. N. Akhmediev, N. N. Vsevolodov, D. A. Esikov, D. A. Shutov, “Photochromism in nonlinear optics: photocontrolled second-harmonic generation by bacteriorhodopsin molecules,” Sov. Phys. Dokl. 32, 219–220 (1987).
  37. A. Lewis, “Molecular mechanism of excitation in visual transduction and bacteriorhodopsin,” Proc. Natl. Acad. Sci. U.S.A. 75, 549–553 (1978).
    [Crossref] [PubMed]
  38. Y. R. Shen, The Principles of Nonlinear Opt (Wiley, New York, 1984).
  39. D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules (Academic, Orlando, Fla., 1987), Vols.I and II.
  40. G. T. Boyd, Y. R. Shen, “Continuous-wave second-harmonic generation as a surface microprobe,” Opt. Lett. 11, 97–99 (1986).
    [Crossref] [PubMed]
  41. W. J. Tomlinson, “Analysis of bit-oriented optical memories using photochromic media: errata,” Appl. Opt. 23, 4604–4612 (1984).

1991 (1)

1990 (2)

N. Hamp, C. Branche, D. Oesterhelt, “Bacteriorhodopsin wild type and variant aspartate—96→ asparagine as reversible holographic media,” Biophys. J. 58, 83–91 (1990).
[Crossref]

O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, “Saturable absorption, wave mixing and phase conjugation with bacteriorhodopsin,” Opt. Lett. 18, 1117–1119 (1990).
[Crossref]

1989 (3)

S. Kunugi, K. Tatsukawa, T. Nakajima, A. Nomura, A. Tanaka, “Orientation of bacteriorhodopsin in non-aqueous polymer membrane,” Polym. Bull. 21, 59–62 (1989).
[Crossref]

G. Rayfields, “Bacteriorhodopsin as an ultrafast electrooptic material,” Phys. Bull. 34, 483 (1989).

J. Y. Huang, Z. Chen, A. Lewis, “Second-harmonic generation in purple membrane-poly (vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in BR and M,” J. Phys. Chem. 93, 3314–3320 (1989).
[Crossref]

1988 (3)

A. Lewis, V. del Priore, “The biophysics of visual photoreception,” Phys. Today 41(1), 38–46 (1988).
[Crossref]

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, C. V. Shank, “Direct observation of the femotosecond excited-state cis–trans isomerization in bacteriorhodopsin,” Science 240, 777–000 (1988).
[Crossref] [PubMed]

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir-Blodgett films,” Thin Solid Films 160, 145–151 (1988).
[Crossref]

1987 (2)

O. A. Aktsipetrov, N. N. Akhmediev, N. N. Vsevolodov, D. A. Esikov, D. A. Shutov, “Photochromism in nonlinear optics: photocontrolled second-harmonic generation by bacteriorhodopsin molecules,” Sov. Phys. Dokl. 32, 219–220 (1987).

N. R. Hackett, L. J. Stern, B. H. Chao, K. A. Kronis, H. G. Khorana, “Structure-function studies on bacteriorhodopsin,” J. Biol. Chem. 262, 9277–9284 (1987).
[PubMed]

1986 (1)

1985 (3)

M. A. Gilles-Gonsales, N. R. Hackett, S. J. Jones, H. G. Khorana, D. S. Lee, K. M. Lo, J. M. Mccoy, “Methods for Mutagenesis of the Bacteriorhodopsin Gene,” Methods Enzymol. 125, 190–214 (1985).
[Crossref]

N. N. Vsebolodov, G. R. Ivanitsky, “Biological photosensory complexes as technical information carriers,” Biofizika 30, 883–887 (1985).

N. N. Vsevolodov, V. A. Poltoratski, “Holograms in biochrome, a biological photochromic material,” Sov. Phys. Tech. Phys. 30, 1235 (1985).

1984 (1)

W. J. Tomlinson, “Analysis of bit-oriented optical memories using photochromic media: errata,” Appl. Opt. 23, 4604–4612 (1984).

1983 (2)

T. R. N. Kutty, A. G. Fischer, “Planar orientation of nematic liquid crystals by chemisorbed polyvinyl alcohol surface layer,” Mol. Cryst. Liq. Cryst. 99, 301–318 (1983).
[Crossref]

G. Varo, L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium Halobium,” Biophys. J. 43, 47–51 (1983).
[Crossref] [PubMed]

1982 (1)

L. Keszthelyi, P. Ormos, G. Varo, “Fast components of the electrical response signal of bacteriorhodopsin protein,” Acta Phys. Hung. 53, 143–151 (1982).
[Crossref]

1981 (1)

G. Varo, “Dried oriented purple membrane samples,” Acta. Biol. Hung. 32, 301–310 (1981).

1980 (2)

M. Eisenbach, C. Weissmann, G. Tanny, R. Caplan, “Bacteriorhodopsin-loaded charged synthetic membranes,” FEBS Lett. 81, 77–80 (1980).
[Crossref]

M. Ottolenghi, “The photochemistry of rhodopsins,” Adv. Photochem. 12, 97–200 (1980).
[Crossref]

1979 (1)

W. V. Sherman, R. C. Eicke, S. R. Stafford, F. W. Wasacz, “Branching in the bacteriorhodopsin photochemical cycle,” Photochem. Photobiol. 30, 727–729 (1979).
[Crossref]

1978 (2)

K. A. Fisher, K. Yanagimoto, W. Stoekenius, “Oriented adsorption of purple membrane to cationic surfaces,” J. Cell Biol. 77, 611–621 (1978).
[Crossref] [PubMed]

A. Lewis, “Molecular mechanism of excitation in visual transduction and bacteriorhodopsin,” Proc. Natl. Acad. Sci. U.S.A. 75, 549–553 (1978).
[Crossref] [PubMed]

1977 (5)

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).
[Crossref] [PubMed]

S. B. Huang, J. I. Korenbrot, W. Stoeckenius, “Structural and spectroscopic characteristics of bacteriorhodopsin in airwater interfacial films,” J. Membr. Biol. 36, 115–135 (1977).
[Crossref]

R. Korenstein, B. Hess, “Hydration effect on the photocycle of bacteriorhodopsin in thin layers of purple membrane,” Nature (London) 270, 184–186 (1977).
[Crossref]

B. Becher, T. G. Ebrey, “The quantum efficiency for the photochemical conversion of the purple membrane protein,” Biophys. J. 17, 185–191 (1977).
[Crossref] [PubMed]

M. A. Marcus, A. Lewis, E. Racker, H. Crespi, “Physiological and structure investigations of bacteriorhodopsin analogs,” Biochem. Biophys. Res. Commun. 78, 669–675 (1977).
[Crossref] [PubMed]

1976 (2)

R. Korenstein, W. V. Sherman, S. R. Caplan, “Kinetic isotope effects in the photochemical cycle of bacteriorhodopsin,” Biophys. Struct. Mech. 2, 267–276 (1976).
[Crossref] [PubMed]

Z. Dancshazy, B. Karvaly, “Incorporation of bacteriorhodopsin into a bilayer lipid membrane; a photoelectric-spectroscopic,” FEBS Lett. 72, 136–138 (1976).
[Crossref] [PubMed]

1974 (1)

D. Oesterhelt, W. Stockenius, “Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane,” Methods Enzymol. 31, 667–678 (1974).
[Crossref] [PubMed]

1973 (1)

D. Oesterhelt, B. Hess, “Reversible photolysis of the purple complex in the purple membrane of Halobacterium Halobium,” Eur. J. Biochem. 37, 316–326 (1973).
[Crossref] [PubMed]

Akhmediev, N. N.

O. A. Aktsipetrov, N. N. Akhmediev, N. N. Vsevolodov, D. A. Esikov, D. A. Shutov, “Photochromism in nonlinear optics: photocontrolled second-harmonic generation by bacteriorhodopsin molecules,” Sov. Phys. Dokl. 32, 219–220 (1987).

Aktsipetrov, O. A.

O. A. Aktsipetrov, N. N. Akhmediev, N. N. Vsevolodov, D. A. Esikov, D. A. Shutov, “Photochromism in nonlinear optics: photocontrolled second-harmonic generation by bacteriorhodopsin molecules,” Sov. Phys. Dokl. 32, 219–220 (1987).

Becher, B.

B. Becher, T. G. Ebrey, “The quantum efficiency for the photochemical conversion of the purple membrane protein,” Biophys. J. 17, 185–191 (1977).
[Crossref] [PubMed]

Birge, R. R.

R. R. Birge, C. F. Zhang, A. L. Lawrence, “Optimal random access memory based on bacteriorhodopsin,” in Proceedings of the Fine Particle Society (Fine Particle Society, Santa Clara, Calif.1988).

Boyd, G. T.

Branche, C.

N. Hamp, C. Branche, D. Oesterhelt, “Bacteriorhodopsin wild type and variant aspartate—96→ asparagine as reversible holographic media,” Biophys. J. 58, 83–91 (1990).
[Crossref]

Brito Cruz, C. H.

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, C. V. Shank, “Direct observation of the femotosecond excited-state cis–trans isomerization in bacteriorhodopsin,” Science 240, 777–000 (1988).
[Crossref] [PubMed]

Caplan, R.

M. Eisenbach, C. Weissmann, G. Tanny, R. Caplan, “Bacteriorhodopsin-loaded charged synthetic membranes,” FEBS Lett. 81, 77–80 (1980).
[Crossref]

Caplan, S. R.

R. Korenstein, W. V. Sherman, S. R. Caplan, “Kinetic isotope effects in the photochemical cycle of bacteriorhodopsin,” Biophys. Struct. Mech. 2, 267–276 (1976).
[Crossref] [PubMed]

Chao, B. H.

N. R. Hackett, L. J. Stern, B. H. Chao, K. A. Kronis, H. G. Khorana, “Structure-function studies on bacteriorhodopsin,” J. Biol. Chem. 262, 9277–9284 (1987).
[PubMed]

Chen, Z.

J. Y. Huang, Z. Chen, A. Lewis, “Second-harmonic generation in purple membrane-poly (vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in BR and M,” J. Phys. Chem. 93, 3314–3320 (1989).
[Crossref]

Z. Chen, H. Takei, A. Lewis, “Optical implementations of neural networks with wavelength-encoded bipolar weight using bacteriorhodopsin,” presented at the International Joint Conference on Neural Networks, San Diego, California, 1990.

Crespi, H.

M. A. Marcus, A. Lewis, E. Racker, H. Crespi, “Physiological and structure investigations of bacteriorhodopsin analogs,” Biochem. Biophys. Res. Commun. 78, 669–675 (1977).
[Crossref] [PubMed]

Dancshazy, Z.

Z. Dancshazy, B. Karvaly, “Incorporation of bacteriorhodopsin into a bilayer lipid membrane; a photoelectric-spectroscopic,” FEBS Lett. 72, 136–138 (1976).
[Crossref] [PubMed]

del Priore, V.

A. Lewis, V. del Priore, “The biophysics of visual photoreception,” Phys. Today 41(1), 38–46 (1988).
[Crossref]

Ebrey, T. G.

B. Becher, T. G. Ebrey, “The quantum efficiency for the photochemical conversion of the purple membrane protein,” Biophys. J. 17, 185–191 (1977).
[Crossref] [PubMed]

Eicke, R. C.

W. V. Sherman, R. C. Eicke, S. R. Stafford, F. W. Wasacz, “Branching in the bacteriorhodopsin photochemical cycle,” Photochem. Photobiol. 30, 727–729 (1979).
[Crossref]

Eisenbach, M.

M. Eisenbach, C. Weissmann, G. Tanny, R. Caplan, “Bacteriorhodopsin-loaded charged synthetic membranes,” FEBS Lett. 81, 77–80 (1980).
[Crossref]

Esikov, D. A.

O. A. Aktsipetrov, N. N. Akhmediev, N. N. Vsevolodov, D. A. Esikov, D. A. Shutov, “Photochromism in nonlinear optics: photocontrolled second-harmonic generation by bacteriorhodopsin molecules,” Sov. Phys. Dokl. 32, 219–220 (1987).

Finch, C. A.

C. A. Finch, Properties and Applications of Polyvinyl Alcohol (Wiley, New York, 1973).

Fischer, A. G.

T. R. N. Kutty, A. G. Fischer, “Planar orientation of nematic liquid crystals by chemisorbed polyvinyl alcohol surface layer,” Mol. Cryst. Liq. Cryst. 99, 301–318 (1983).
[Crossref]

Fischer, B.

O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, “Saturable absorption, wave mixing and phase conjugation with bacteriorhodopsin,” Opt. Lett. 18, 1117–1119 (1990).
[Crossref]

Fisher, K. A.

K. A. Fisher, K. Yanagimoto, W. Stoekenius, “Oriented adsorption of purple membrane to cationic surfaces,” J. Cell Biol. 77, 611–621 (1978).
[Crossref] [PubMed]

Furuno, T.

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir-Blodgett films,” Thin Solid Films 160, 145–151 (1988).
[Crossref]

Gilles-Gonsales, M. A.

M. A. Gilles-Gonsales, N. R. Hackett, S. J. Jones, H. G. Khorana, D. S. Lee, K. M. Lo, J. M. Mccoy, “Methods for Mutagenesis of the Bacteriorhodopsin Gene,” Methods Enzymol. 125, 190–214 (1985).
[Crossref]

Hackett, N. R.

N. R. Hackett, L. J. Stern, B. H. Chao, K. A. Kronis, H. G. Khorana, “Structure-function studies on bacteriorhodopsin,” J. Biol. Chem. 262, 9277–9284 (1987).
[PubMed]

M. A. Gilles-Gonsales, N. R. Hackett, S. J. Jones, H. G. Khorana, D. S. Lee, K. M. Lo, J. M. Mccoy, “Methods for Mutagenesis of the Bacteriorhodopsin Gene,” Methods Enzymol. 125, 190–214 (1985).
[Crossref]

Hamp, N.

N. Hamp, C. Branche, D. Oesterhelt, “Bacteriorhodopsin wild type and variant aspartate—96→ asparagine as reversible holographic media,” Biophys. J. 58, 83–91 (1990).
[Crossref]

Haronian, D.

Hess, B.

R. Korenstein, B. Hess, “Hydration effect on the photocycle of bacteriorhodopsin in thin layers of purple membrane,” Nature (London) 270, 184–186 (1977).
[Crossref]

D. Oesterhelt, B. Hess, “Reversible photolysis of the purple complex in the purple membrane of Halobacterium Halobium,” Eur. J. Biochem. 37, 316–326 (1973).
[Crossref] [PubMed]

Huang, J. Y.

J. Y. Huang, Z. Chen, A. Lewis, “Second-harmonic generation in purple membrane-poly (vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in BR and M,” J. Phys. Chem. 93, 3314–3320 (1989).
[Crossref]

Huang, S. B.

S. B. Huang, J. I. Korenbrot, W. Stoeckenius, “Structural and spectroscopic characteristics of bacteriorhodopsin in airwater interfacial films,” J. Membr. Biol. 36, 115–135 (1977).
[Crossref]

Ikegami, A.

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir-Blodgett films,” Thin Solid Films 160, 145–151 (1988).
[Crossref]

Ivanitsky, G. R.

N. N. Vsebolodov, G. R. Ivanitsky, “Biological photosensory complexes as technical information carriers,” Biofizika 30, 883–887 (1985).

Jones, S. J.

M. A. Gilles-Gonsales, N. R. Hackett, S. J. Jones, H. G. Khorana, D. S. Lee, K. M. Lo, J. M. Mccoy, “Methods for Mutagenesis of the Bacteriorhodopsin Gene,” Methods Enzymol. 125, 190–214 (1985).
[Crossref]

Kagawa, Y.

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).
[Crossref] [PubMed]

Karvaly, B.

Z. Dancshazy, B. Karvaly, “Incorporation of bacteriorhodopsin into a bilayer lipid membrane; a photoelectric-spectroscopic,” FEBS Lett. 72, 136–138 (1976).
[Crossref] [PubMed]

Keszthelyi, L.

G. Varo, L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium Halobium,” Biophys. J. 43, 47–51 (1983).
[Crossref] [PubMed]

L. Keszthelyi, P. Ormos, G. Varo, “Fast components of the electrical response signal of bacteriorhodopsin protein,” Acta Phys. Hung. 53, 143–151 (1982).
[Crossref]

Khorana, H. G.

N. R. Hackett, L. J. Stern, B. H. Chao, K. A. Kronis, H. G. Khorana, “Structure-function studies on bacteriorhodopsin,” J. Biol. Chem. 262, 9277–9284 (1987).
[PubMed]

M. A. Gilles-Gonsales, N. R. Hackett, S. J. Jones, H. G. Khorana, D. S. Lee, K. M. Lo, J. M. Mccoy, “Methods for Mutagenesis of the Bacteriorhodopsin Gene,” Methods Enzymol. 125, 190–214 (1985).
[Crossref]

Korenbrot, J. I.

S. B. Huang, J. I. Korenbrot, W. Stoeckenius, “Structural and spectroscopic characteristics of bacteriorhodopsin in airwater interfacial films,” J. Membr. Biol. 36, 115–135 (1977).
[Crossref]

Korenstein, R.

R. Korenstein, B. Hess, “Hydration effect on the photocycle of bacteriorhodopsin in thin layers of purple membrane,” Nature (London) 270, 184–186 (1977).
[Crossref]

R. Korenstein, W. V. Sherman, S. R. Caplan, “Kinetic isotope effects in the photochemical cycle of bacteriorhodopsin,” Biophys. Struct. Mech. 2, 267–276 (1976).
[Crossref] [PubMed]

Kouyama, T.

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir-Blodgett films,” Thin Solid Films 160, 145–151 (1988).
[Crossref]

Kronis, K. A.

N. R. Hackett, L. J. Stern, B. H. Chao, K. A. Kronis, H. G. Khorana, “Structure-function studies on bacteriorhodopsin,” J. Biol. Chem. 262, 9277–9284 (1987).
[PubMed]

Kunugi, S.

S. Kunugi, K. Tatsukawa, T. Nakajima, A. Nomura, A. Tanaka, “Orientation of bacteriorhodopsin in non-aqueous polymer membrane,” Polym. Bull. 21, 59–62 (1989).
[Crossref]

Kutty, T. R. N.

T. R. N. Kutty, A. G. Fischer, “Planar orientation of nematic liquid crystals by chemisorbed polyvinyl alcohol surface layer,” Mol. Cryst. Liq. Cryst. 99, 301–318 (1983).
[Crossref]

Lawrence, A. L.

R. R. Birge, C. F. Zhang, A. L. Lawrence, “Optimal random access memory based on bacteriorhodopsin,” in Proceedings of the Fine Particle Society (Fine Particle Society, Santa Clara, Calif.1988).

Lee, D. S.

M. A. Gilles-Gonsales, N. R. Hackett, S. J. Jones, H. G. Khorana, D. S. Lee, K. M. Lo, J. M. Mccoy, “Methods for Mutagenesis of the Bacteriorhodopsin Gene,” Methods Enzymol. 125, 190–214 (1985).
[Crossref]

Lewis, A.

D. Haronian, A. Lewis, “Elements of a unique bacteriorhodopsin neural network architecture,” Appl. Opt. 30, 597–608 (1991).
[Crossref] [PubMed]

O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, “Saturable absorption, wave mixing and phase conjugation with bacteriorhodopsin,” Opt. Lett. 18, 1117–1119 (1990).
[Crossref]

J. Y. Huang, Z. Chen, A. Lewis, “Second-harmonic generation in purple membrane-poly (vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in BR and M,” J. Phys. Chem. 93, 3314–3320 (1989).
[Crossref]

A. Lewis, V. del Priore, “The biophysics of visual photoreception,” Phys. Today 41(1), 38–46 (1988).
[Crossref]

A. Lewis, “Molecular mechanism of excitation in visual transduction and bacteriorhodopsin,” Proc. Natl. Acad. Sci. U.S.A. 75, 549–553 (1978).
[Crossref] [PubMed]

M. A. Marcus, A. Lewis, E. Racker, H. Crespi, “Physiological and structure investigations of bacteriorhodopsin analogs,” Biochem. Biophys. Res. Commun. 78, 669–675 (1977).
[Crossref] [PubMed]

Z. Chen, H. Takei, A. Lewis, “Optical implementations of neural networks with wavelength-encoded bipolar weight using bacteriorhodopsin,” presented at the International Joint Conference on Neural Networks, San Diego, California, 1990.

C. Mobarry, A. Lewis, “Implementations of neural networks using photoactivated conducting biological materials,” presented at the 1986 International Optical Computing ConferenceJerusalem, 1986.

Lo, K. M.

M. A. Gilles-Gonsales, N. R. Hackett, S. J. Jones, H. G. Khorana, D. S. Lee, K. M. Lo, J. M. Mccoy, “Methods for Mutagenesis of the Bacteriorhodopsin Gene,” Methods Enzymol. 125, 190–214 (1985).
[Crossref]

Marcus, M. A.

M. A. Marcus, A. Lewis, E. Racker, H. Crespi, “Physiological and structure investigations of bacteriorhodopsin analogs,” Biochem. Biophys. Res. Commun. 78, 669–675 (1977).
[Crossref] [PubMed]

Mathies, R. A.

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, C. V. Shank, “Direct observation of the femotosecond excited-state cis–trans isomerization in bacteriorhodopsin,” Science 240, 777–000 (1988).
[Crossref] [PubMed]

Mccoy, J. M.

M. A. Gilles-Gonsales, N. R. Hackett, S. J. Jones, H. G. Khorana, D. S. Lee, K. M. Lo, J. M. Mccoy, “Methods for Mutagenesis of the Bacteriorhodopsin Gene,” Methods Enzymol. 125, 190–214 (1985).
[Crossref]

Mobarry, C.

C. Mobarry, A. Lewis, “Implementations of neural networks using photoactivated conducting biological materials,” presented at the 1986 International Optical Computing ConferenceJerusalem, 1986.

Nakajima, T.

S. Kunugi, K. Tatsukawa, T. Nakajima, A. Nomura, A. Tanaka, “Orientation of bacteriorhodopsin in non-aqueous polymer membrane,” Polym. Bull. 21, 59–62 (1989).
[Crossref]

Nebenzahl, I.

O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, “Saturable absorption, wave mixing and phase conjugation with bacteriorhodopsin,” Opt. Lett. 18, 1117–1119 (1990).
[Crossref]

Nomura, A.

S. Kunugi, K. Tatsukawa, T. Nakajima, A. Nomura, A. Tanaka, “Orientation of bacteriorhodopsin in non-aqueous polymer membrane,” Polym. Bull. 21, 59–62 (1989).
[Crossref]

Oesterhelt, D.

N. Hamp, C. Branche, D. Oesterhelt, “Bacteriorhodopsin wild type and variant aspartate—96→ asparagine as reversible holographic media,” Biophys. J. 58, 83–91 (1990).
[Crossref]

D. Oesterhelt, W. Stockenius, “Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane,” Methods Enzymol. 31, 667–678 (1974).
[Crossref] [PubMed]

D. Oesterhelt, B. Hess, “Reversible photolysis of the purple complex in the purple membrane of Halobacterium Halobium,” Eur. J. Biochem. 37, 316–326 (1973).
[Crossref] [PubMed]

Ohno, K.

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).
[Crossref] [PubMed]

Ormos, P.

L. Keszthelyi, P. Ormos, G. Varo, “Fast components of the electrical response signal of bacteriorhodopsin protein,” Acta Phys. Hung. 53, 143–151 (1982).
[Crossref]

Ottolenghi, M.

M. Ottolenghi, “The photochemistry of rhodopsins,” Adv. Photochem. 12, 97–200 (1980).
[Crossref]

Pollard, W. T.

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, C. V. Shank, “Direct observation of the femotosecond excited-state cis–trans isomerization in bacteriorhodopsin,” Science 240, 777–000 (1988).
[Crossref] [PubMed]

Poltoratski, V. A.

N. N. Vsevolodov, V. A. Poltoratski, “Holograms in biochrome, a biological photochromic material,” Sov. Phys. Tech. Phys. 30, 1235 (1985).

Racker, E.

M. A. Marcus, A. Lewis, E. Racker, H. Crespi, “Physiological and structure investigations of bacteriorhodopsin analogs,” Biochem. Biophys. Res. Commun. 78, 669–675 (1977).
[Crossref] [PubMed]

Rayfields, G.

G. Rayfields, “Bacteriorhodopsin as an ultrafast electrooptic material,” Phys. Bull. 34, 483 (1989).

Sasabe, H.

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir-Blodgett films,” Thin Solid Films 160, 145–151 (1988).
[Crossref]

Shank, C. V.

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, C. V. Shank, “Direct observation of the femotosecond excited-state cis–trans isomerization in bacteriorhodopsin,” Science 240, 777–000 (1988).
[Crossref] [PubMed]

Shen, Y. R.

Sherman, W. V.

W. V. Sherman, R. C. Eicke, S. R. Stafford, F. W. Wasacz, “Branching in the bacteriorhodopsin photochemical cycle,” Photochem. Photobiol. 30, 727–729 (1979).
[Crossref]

R. Korenstein, W. V. Sherman, S. R. Caplan, “Kinetic isotope effects in the photochemical cycle of bacteriorhodopsin,” Biophys. Struct. Mech. 2, 267–276 (1976).
[Crossref] [PubMed]

Shutov, D. A.

O. A. Aktsipetrov, N. N. Akhmediev, N. N. Vsevolodov, D. A. Esikov, D. A. Shutov, “Photochromism in nonlinear optics: photocontrolled second-harmonic generation by bacteriorhodopsin molecules,” Sov. Phys. Dokl. 32, 219–220 (1987).

Stafford, S. R.

W. V. Sherman, R. C. Eicke, S. R. Stafford, F. W. Wasacz, “Branching in the bacteriorhodopsin photochemical cycle,” Photochem. Photobiol. 30, 727–729 (1979).
[Crossref]

Stern, L. J.

N. R. Hackett, L. J. Stern, B. H. Chao, K. A. Kronis, H. G. Khorana, “Structure-function studies on bacteriorhodopsin,” J. Biol. Chem. 262, 9277–9284 (1987).
[PubMed]

Stockenius, W.

D. Oesterhelt, W. Stockenius, “Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane,” Methods Enzymol. 31, 667–678 (1974).
[Crossref] [PubMed]

Stoeckenius, W.

S. B. Huang, J. I. Korenbrot, W. Stoeckenius, “Structural and spectroscopic characteristics of bacteriorhodopsin in airwater interfacial films,” J. Membr. Biol. 36, 115–135 (1977).
[Crossref]

Stoekenius, W.

K. A. Fisher, K. Yanagimoto, W. Stoekenius, “Oriented adsorption of purple membrane to cationic surfaces,” J. Cell Biol. 77, 611–621 (1978).
[Crossref] [PubMed]

Takei, H.

Z. Chen, H. Takei, A. Lewis, “Optical implementations of neural networks with wavelength-encoded bipolar weight using bacteriorhodopsin,” presented at the International Joint Conference on Neural Networks, San Diego, California, 1990.

Takeuchi, Y.

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).
[Crossref] [PubMed]

Takimoto, K.

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir-Blodgett films,” Thin Solid Films 160, 145–151 (1988).
[Crossref]

Tanaka, A.

S. Kunugi, K. Tatsukawa, T. Nakajima, A. Nomura, A. Tanaka, “Orientation of bacteriorhodopsin in non-aqueous polymer membrane,” Polym. Bull. 21, 59–62 (1989).
[Crossref]

Tanny, G.

M. Eisenbach, C. Weissmann, G. Tanny, R. Caplan, “Bacteriorhodopsin-loaded charged synthetic membranes,” FEBS Lett. 81, 77–80 (1980).
[Crossref]

Tatsukawa, K.

S. Kunugi, K. Tatsukawa, T. Nakajima, A. Nomura, A. Tanaka, “Orientation of bacteriorhodopsin in non-aqueous polymer membrane,” Polym. Bull. 21, 59–62 (1989).
[Crossref]

Tomlinson, W. J.

W. J. Tomlinson, “Analysis of bit-oriented optical memories using photochromic media: errata,” Appl. Opt. 23, 4604–4612 (1984).

Varo, G.

G. Varo, L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium Halobium,” Biophys. J. 43, 47–51 (1983).
[Crossref] [PubMed]

L. Keszthelyi, P. Ormos, G. Varo, “Fast components of the electrical response signal of bacteriorhodopsin protein,” Acta Phys. Hung. 53, 143–151 (1982).
[Crossref]

G. Varo, “Dried oriented purple membrane samples,” Acta. Biol. Hung. 32, 301–310 (1981).

Vsebolodov, N. N.

N. N. Vsebolodov, G. R. Ivanitsky, “Biological photosensory complexes as technical information carriers,” Biofizika 30, 883–887 (1985).

Vsevolodov, N. N.

O. A. Aktsipetrov, N. N. Akhmediev, N. N. Vsevolodov, D. A. Esikov, D. A. Shutov, “Photochromism in nonlinear optics: photocontrolled second-harmonic generation by bacteriorhodopsin molecules,” Sov. Phys. Dokl. 32, 219–220 (1987).

N. N. Vsevolodov, V. A. Poltoratski, “Holograms in biochrome, a biological photochromic material,” Sov. Phys. Tech. Phys. 30, 1235 (1985).

Wasacz, F. W.

W. V. Sherman, R. C. Eicke, S. R. Stafford, F. W. Wasacz, “Branching in the bacteriorhodopsin photochemical cycle,” Photochem. Photobiol. 30, 727–729 (1979).
[Crossref]

Weissmann, C.

M. Eisenbach, C. Weissmann, G. Tanny, R. Caplan, “Bacteriorhodopsin-loaded charged synthetic membranes,” FEBS Lett. 81, 77–80 (1980).
[Crossref]

Werner, O.

O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, “Saturable absorption, wave mixing and phase conjugation with bacteriorhodopsin,” Opt. Lett. 18, 1117–1119 (1990).
[Crossref]

Yanagimoto, K.

K. A. Fisher, K. Yanagimoto, W. Stoekenius, “Oriented adsorption of purple membrane to cationic surfaces,” J. Cell Biol. 77, 611–621 (1978).
[Crossref] [PubMed]

Yoshida, M.

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).
[Crossref] [PubMed]

Zhang, C. F.

R. R. Birge, C. F. Zhang, A. L. Lawrence, “Optimal random access memory based on bacteriorhodopsin,” in Proceedings of the Fine Particle Society (Fine Particle Society, Santa Clara, Calif.1988).

Acta Phys. Hung. (1)

L. Keszthelyi, P. Ormos, G. Varo, “Fast components of the electrical response signal of bacteriorhodopsin protein,” Acta Phys. Hung. 53, 143–151 (1982).
[Crossref]

Acta. Biol. Hung. (1)

G. Varo, “Dried oriented purple membrane samples,” Acta. Biol. Hung. 32, 301–310 (1981).

Adv. Photochem. (1)

M. Ottolenghi, “The photochemistry of rhodopsins,” Adv. Photochem. 12, 97–200 (1980).
[Crossref]

Appl. Opt. (2)

D. Haronian, A. Lewis, “Elements of a unique bacteriorhodopsin neural network architecture,” Appl. Opt. 30, 597–608 (1991).
[Crossref] [PubMed]

W. J. Tomlinson, “Analysis of bit-oriented optical memories using photochromic media: errata,” Appl. Opt. 23, 4604–4612 (1984).

Biochem. Biophys. Res. Commun. (2)

M. A. Marcus, A. Lewis, E. Racker, H. Crespi, “Physiological and structure investigations of bacteriorhodopsin analogs,” Biochem. Biophys. Res. Commun. 78, 669–675 (1977).
[Crossref] [PubMed]

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).
[Crossref] [PubMed]

Biofizika (1)

N. N. Vsebolodov, G. R. Ivanitsky, “Biological photosensory complexes as technical information carriers,” Biofizika 30, 883–887 (1985).

Biophys. J. (3)

B. Becher, T. G. Ebrey, “The quantum efficiency for the photochemical conversion of the purple membrane protein,” Biophys. J. 17, 185–191 (1977).
[Crossref] [PubMed]

G. Varo, L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium Halobium,” Biophys. J. 43, 47–51 (1983).
[Crossref] [PubMed]

N. Hamp, C. Branche, D. Oesterhelt, “Bacteriorhodopsin wild type and variant aspartate—96→ asparagine as reversible holographic media,” Biophys. J. 58, 83–91 (1990).
[Crossref]

Biophys. Struct. Mech. (1)

R. Korenstein, W. V. Sherman, S. R. Caplan, “Kinetic isotope effects in the photochemical cycle of bacteriorhodopsin,” Biophys. Struct. Mech. 2, 267–276 (1976).
[Crossref] [PubMed]

Eur. J. Biochem. (1)

D. Oesterhelt, B. Hess, “Reversible photolysis of the purple complex in the purple membrane of Halobacterium Halobium,” Eur. J. Biochem. 37, 316–326 (1973).
[Crossref] [PubMed]

FEBS Lett. (2)

Z. Dancshazy, B. Karvaly, “Incorporation of bacteriorhodopsin into a bilayer lipid membrane; a photoelectric-spectroscopic,” FEBS Lett. 72, 136–138 (1976).
[Crossref] [PubMed]

M. Eisenbach, C. Weissmann, G. Tanny, R. Caplan, “Bacteriorhodopsin-loaded charged synthetic membranes,” FEBS Lett. 81, 77–80 (1980).
[Crossref]

J. Biol. Chem. (1)

N. R. Hackett, L. J. Stern, B. H. Chao, K. A. Kronis, H. G. Khorana, “Structure-function studies on bacteriorhodopsin,” J. Biol. Chem. 262, 9277–9284 (1987).
[PubMed]

J. Cell Biol. (1)

K. A. Fisher, K. Yanagimoto, W. Stoekenius, “Oriented adsorption of purple membrane to cationic surfaces,” J. Cell Biol. 77, 611–621 (1978).
[Crossref] [PubMed]

J. Membr. Biol. (1)

S. B. Huang, J. I. Korenbrot, W. Stoeckenius, “Structural and spectroscopic characteristics of bacteriorhodopsin in airwater interfacial films,” J. Membr. Biol. 36, 115–135 (1977).
[Crossref]

J. Phys. Chem. (1)

J. Y. Huang, Z. Chen, A. Lewis, “Second-harmonic generation in purple membrane-poly (vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in BR and M,” J. Phys. Chem. 93, 3314–3320 (1989).
[Crossref]

Methods Enzymol. (2)

D. Oesterhelt, W. Stockenius, “Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane,” Methods Enzymol. 31, 667–678 (1974).
[Crossref] [PubMed]

M. A. Gilles-Gonsales, N. R. Hackett, S. J. Jones, H. G. Khorana, D. S. Lee, K. M. Lo, J. M. Mccoy, “Methods for Mutagenesis of the Bacteriorhodopsin Gene,” Methods Enzymol. 125, 190–214 (1985).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

T. R. N. Kutty, A. G. Fischer, “Planar orientation of nematic liquid crystals by chemisorbed polyvinyl alcohol surface layer,” Mol. Cryst. Liq. Cryst. 99, 301–318 (1983).
[Crossref]

Nature (London) (1)

R. Korenstein, B. Hess, “Hydration effect on the photocycle of bacteriorhodopsin in thin layers of purple membrane,” Nature (London) 270, 184–186 (1977).
[Crossref]

Opt. Lett. (2)

O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, “Saturable absorption, wave mixing and phase conjugation with bacteriorhodopsin,” Opt. Lett. 18, 1117–1119 (1990).
[Crossref]

G. T. Boyd, Y. R. Shen, “Continuous-wave second-harmonic generation as a surface microprobe,” Opt. Lett. 11, 97–99 (1986).
[Crossref] [PubMed]

Photochem. Photobiol. (1)

W. V. Sherman, R. C. Eicke, S. R. Stafford, F. W. Wasacz, “Branching in the bacteriorhodopsin photochemical cycle,” Photochem. Photobiol. 30, 727–729 (1979).
[Crossref]

Phys. Bull. (1)

G. Rayfields, “Bacteriorhodopsin as an ultrafast electrooptic material,” Phys. Bull. 34, 483 (1989).

Phys. Today (1)

A. Lewis, V. del Priore, “The biophysics of visual photoreception,” Phys. Today 41(1), 38–46 (1988).
[Crossref]

Polym. Bull. (1)

S. Kunugi, K. Tatsukawa, T. Nakajima, A. Nomura, A. Tanaka, “Orientation of bacteriorhodopsin in non-aqueous polymer membrane,” Polym. Bull. 21, 59–62 (1989).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Lewis, “Molecular mechanism of excitation in visual transduction and bacteriorhodopsin,” Proc. Natl. Acad. Sci. U.S.A. 75, 549–553 (1978).
[Crossref] [PubMed]

Science (1)

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, C. V. Shank, “Direct observation of the femotosecond excited-state cis–trans isomerization in bacteriorhodopsin,” Science 240, 777–000 (1988).
[Crossref] [PubMed]

Sov. Phys. Dokl. (1)

O. A. Aktsipetrov, N. N. Akhmediev, N. N. Vsevolodov, D. A. Esikov, D. A. Shutov, “Photochromism in nonlinear optics: photocontrolled second-harmonic generation by bacteriorhodopsin molecules,” Sov. Phys. Dokl. 32, 219–220 (1987).

Sov. Phys. Tech. Phys. (1)

N. N. Vsevolodov, V. A. Poltoratski, “Holograms in biochrome, a biological photochromic material,” Sov. Phys. Tech. Phys. 30, 1235 (1985).

Thin Solid Films (1)

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir-Blodgett films,” Thin Solid Films 160, 145–151 (1988).
[Crossref]

Other (7)

C. A. Finch, Properties and Applications of Polyvinyl Alcohol (Wiley, New York, 1973).

Y. R. Shen, The Principles of Nonlinear Opt (Wiley, New York, 1984).

D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules (Academic, Orlando, Fla., 1987), Vols.I and II.

R. R. Birge, C. F. Zhang, A. L. Lawrence, “Optimal random access memory based on bacteriorhodopsin,” in Proceedings of the Fine Particle Society (Fine Particle Society, Santa Clara, Calif.1988).

C. Mobarry, A. Lewis, “Implementations of neural networks using photoactivated conducting biological materials,” presented at the 1986 International Optical Computing ConferenceJerusalem, 1986.

Z. Chen, H. Takei, A. Lewis, “Optical implementations of neural networks with wavelength-encoded bipolar weight using bacteriorhodopsin,” presented at the International Joint Conference on Neural Networks, San Diego, California, 1990.

F. Carter, ed., Molecular Electronic Devices (Dekker, New York, 1982, Vol. 1;Molecular Electronic Devices1988, Vol. 2).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Photochemical cycle of the BR molecule. The dashed arrows indicate the photon-driven process. The solid arrows show the thermal decay path. Quantum yields for the forward photoreaction and back photoreaction of BR, K, and M are also indicated, (b) Absorption spectra of the corresponding intermediates of BR.

Fig. 2
Fig. 2

Images on an optically switchable BR–PVA film. The image is formed at room temperature and can be erased either by blue light, which switches the yellow molecules to purple, or by yellow light, which switches the purple molecules to yellow, (a) Image formed by illuminating a BR–PVA film through a mask with yellow light, (b) Reverse image formed on the same film by first erasing the image in (a) with yellow light and then illuminating the film through the same mask with blue light.

Fig. 3
Fig. 3

Photovoltage from a BR–PVA film. The thickness of the film is ∼170 μm and the OD is 0.13.

Fig. 4
Fig. 4

Second-harmonic image of a dot of M-state molecules on BR–PVA film. The pattern is formed by a focused argon-ion laser beam that pumps the molecules in the illuminated region to the M state. The probe beam is a 1.06-μm Nd:YAG laser, (a) SH signal from a line scan across the pattern. The larger SH signal corresponds to molecules in the BR state and the smaller signal corresponds to M-state molecules, (b) Two-dimensional scan of the SH image of the pattern. Note that, for clarity, the two-dimensional image is plotted with the z-axis of the SH intensity reversed.

Fig. 5
Fig. 5

Normalized SH signal as a function of the exciting fundamental wavelength. The SH signal from the BR state is shown by the solid curve and the dashed curve represents the SH signal from the M state. Note that the scale of the SH signal from the M state has been enlarged by ten.

Fig. 6
Fig. 6

Fraction of molecules switched from M to BR as a function of the energy density for BR–PVA films with different OD's. From left to right, each curve corresponds to a film with an OD of 0.01,0.2, 0.5,1, 3, and 5.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N ( 2 ω ) 16 π 3 ω h c 3 | N s α ( 2 ) | 2 P 2 ( ω ) S ,
F = 1 1 A ln { 1 + [ exp ( A ) 1 ] exp ( σ ϕ I 0 t ) } ,

Metrics