Abstract

Measurements of transmission loss coefficients in AgGaSe2 at 2.1 μm ranged from 0.012 to 0.072 cm−1. Energy density, not peak-power density, proved to be the determining factor in AgGaSe2 damage threshold. Coated-surface damage thresholds originally were found to be in the 1.1–2.5-J/cm2 region by using 180-nsec laser pulses, but damage thresholds as high as 3.5 J/cm2, with a 3 J/cm2 average, were measured in coated samples with improved surface quality.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
    [Crossref]
  2. R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
    [Crossref]
  3. R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-μm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1995).
    [Crossref]
  4. J. Hietanen, Cleveland Crystals, Inc., Cleveland, Ohio 44110 (personal communication, 1991).
  5. R. K. Route, R. S. Feigelson, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
    [Crossref]

1995 (1)

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-μm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1995).
[Crossref]

1986 (1)

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[Crossref]

1976 (1)

R. K. Route, R. S. Feigelson, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[Crossref]

1972 (1)

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[Crossref]

Boyd, G. D.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[Crossref]

Byer, R. L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-μm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1995).
[Crossref]

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[Crossref]

Choy, M. M.

R. K. Route, R. S. Feigelson, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[Crossref]

Eckardt, R. C.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-μm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1995).
[Crossref]

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[Crossref]

Esterowitz, L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[Crossref]

Fan, Y. X.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-μm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1995).
[Crossref]

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[Crossref]

Feigelson, R. S.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-μm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1995).
[Crossref]

R. K. Route, R. S. Feigelson, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[Crossref]

Hietanen, J.

J. Hietanen, Cleveland Crystals, Inc., Cleveland, Ohio 44110 (personal communication, 1991).

Kasper, H. M.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[Crossref]

Marquardt, C. L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[Crossref]

McFee, J. H.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[Crossref]

Raymakers, R. J.

R. K. Route, R. S. Feigelson, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[Crossref]

Route, R. K.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-μm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1995).
[Crossref]

R. K. Route, R. S. Feigelson, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[Crossref]

Storm, M. E.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[Crossref]

Storz, F. G.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[Crossref]

van der Laan, J.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-μm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1995).
[Crossref]

Appl. Phys. Lett. (2)

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[Crossref]

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-μm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[Crossref]

J. Cryst. Growth (1)

R. K. Route, R. S. Feigelson, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[Crossref]

Other (1)

J. Hietanen, Cleveland Crystals, Inc., Cleveland, Ohio 44110 (personal communication, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

IR transmission of coated and uncoated AgGaSe2 samples. Sample lengths were A, 17 mm; B, 25 mm; C, 33 mm; D, 35 mm; E, 34 mm; W-2 (the uncoated witness sample), 1 mm.

Fig. 2
Fig. 2

Transmission loss measurement. R, reflectivity of a single surface; t, sample thickness; α, loss per unit length; I, initial beam intensity.

Fig. 3
Fig. 3

AgGaSe2 damage-threshold measurements comparing standard and repolished samples. Error bars indicate standard deviations of site-to-site variations in threshold.

Tables (2)

Tables Icon

Table I Transmission Loss for Long AgGaSe2 Crystalsa

Tables Icon

Table II Damage-Threshold Measurements for Witness Samples

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R 1 / R 2 = T = ( 1 R ) 2 exp ( α t ) ,
R 3 = R + R ( 1 R ) 2 exp ( 2 α t ) T .
R = ( R 3 ) ( T ) 1 + T 2 / ( 1 R ) 2 .

Metrics