Abstract

A special sizing technique is applied to measuring the diameter of monosized droplet streams that are used for investigation of fuel droplets in enginelike conditions. For these experiments the droplet diameter must be known precisely. The sizing technique used is based on the evaluation of the fringe spacing of scattered light in the forward direction. This technique is independent of the intensity of the incident light. No absolute intensities need to be measured. The droplets are exposed to a focused laser beam. Therefore the frequently used assumption of plane wave fronts is not fulfilled. Elaborate experiments have been carried out to study the influence of a Gaussian intensity distribution of the laser beam on the accuracy of the sizing technique. It has been shown that the droplet diameter can be measured to an accuracy of better than 2% even if the droplet is illuminated by a Gaussian beam for a droplet diameter that is smaller than the beam diameter.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. König, K. Anders, A. Frohn, “A new light scattering technique to measure the diameter of periodically generated moving droplets,” J. Aerosol Sci. 17, 157–167 (1986).
    [CrossRef]
  2. L. J. Spadaccini, J. A. TeVelde, “Autoignition of aircraft-type fuels,” Combust. Flame 46, 283–300 (1982).
    [CrossRef]
  3. E. W. Stringer, A. E. Clarke, J. S. Clarke, “The spontaneous ignition of hydrocarbon fuels in a flowing system,” Proc. Inst. Mech. Eng. 184, 212–224 (1970).
  4. T. E. Parker, M. D. Forsha, H. E. Steward, K. Hom, R. E. Sawyer, A. K. Oppenheim, “Induction period for ignition of fuel sprays at high temperatures and pressures,” in 1985 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1985), paper 850087.
  5. C. P. Koshland, C. T. Bowman, “Combustion of monodis-perse droplet clouds in a reactive environment,” in Proceedings of the Twentieth Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984).
  6. K. Anders, N. Roth, A. Frohn, “Operation characteristics of vibrating-orifice generators as calibration standard for sizing methods and for the study of basic phenomena,” in Proceedings of the Second International Congress on Optical Particle Sizing. (Arizona State U. Press, Tempe, Ariz., 1990), pp. 325–334.
  7. R. N. Berglund, B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Tech. 7, 147–153 (1973).
    [CrossRef]
  8. A. C. Fernandez-Pello, C. K. Law, “A theory for free-convective burning of a condensed fuel particle,” Combust. Flame 44, 97–112 (1982).
    [CrossRef]
  9. H. A. Dwyer, B. R. Sanders, “Calculations of Unsteady Reacting Droplet Flows,” in Proceedings of the Twenty-Second International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), p. 1923.
  10. C. H. Chiang, M. S. Raju, W. A. Sirignano, “Numerical analysis of convecting, vaporizing fuel droplet with variable properties,” in Proceedings of the AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, New York, 1989).
  11. K. Anders, N. Roth, A. Frohn, “Study of the evaporation and combustion of droplets by a new optical sizing method,” in Proceedings of the Sixth International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, Toledo, Ohio, 1987), Vol. 63, pp. 205–214.
  12. G. Mie, “Beiträge zur Optik trüber Medien,” Ann. Phys. 25, 377–445 (1908).
    [CrossRef]
  13. N. Roth, K. Anders, A. Frohn, “Refractive index measurements for the correction of particle sizing methods,” Appl. Opt. (to be published).
  14. W. J. Glantschnig, S. H. Chen, “Light scattering from water droplets in the geometrical optics approximation,” Appl. Opt. 20, 2499–2509 (1981).
    [CrossRef] [PubMed]
  15. W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23, 583–590 (1984).
    [CrossRef]
  16. J. Mäkynen, “Optical particle counters: optimization of response functions,” J. Aerosol Sci. 19, 957–958 (1988).
    [CrossRef]
  17. S. Röthele, H. Neuman, M. Heuer, “Die Anwendung der Fraunhofer Beugung unter 1 μm zur Partikelgrössenánalyse von 0.1 μm bis 2000 μm,” in Proceedings of the Fourth European Symposium on Particle Characterization (PARTEC) (Nürnberg Messe, Nürnberg, 1989).
  18. G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
    [CrossRef]
  19. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
    [CrossRef]
  20. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  21. F. Corbin, G. Grehan, G. Gouesbet, B. Maheu, “Interaction between a sphere and a Gaussian beam: computations on a micro-computer,” Part. Syst. Charact. 5, 103–108 (1988).
    [CrossRef]

1988

J. Mäkynen, “Optical particle counters: optimization of response functions,” J. Aerosol Sci. 19, 957–958 (1988).
[CrossRef]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

F. Corbin, G. Grehan, G. Gouesbet, B. Maheu, “Interaction between a sphere and a Gaussian beam: computations on a micro-computer,” Part. Syst. Charact. 5, 103–108 (1988).
[CrossRef]

G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[CrossRef]

1986

G. König, K. Anders, A. Frohn, “A new light scattering technique to measure the diameter of periodically generated moving droplets,” J. Aerosol Sci. 17, 157–167 (1986).
[CrossRef]

1984

W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23, 583–590 (1984).
[CrossRef]

1982

L. J. Spadaccini, J. A. TeVelde, “Autoignition of aircraft-type fuels,” Combust. Flame 46, 283–300 (1982).
[CrossRef]

A. C. Fernandez-Pello, C. K. Law, “A theory for free-convective burning of a condensed fuel particle,” Combust. Flame 44, 97–112 (1982).
[CrossRef]

1981

1973

R. N. Berglund, B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Tech. 7, 147–153 (1973).
[CrossRef]

1970

E. W. Stringer, A. E. Clarke, J. S. Clarke, “The spontaneous ignition of hydrocarbon fuels in a flowing system,” Proc. Inst. Mech. Eng. 184, 212–224 (1970).

1908

G. Mie, “Beiträge zur Optik trüber Medien,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Anders, K.

G. König, K. Anders, A. Frohn, “A new light scattering technique to measure the diameter of periodically generated moving droplets,” J. Aerosol Sci. 17, 157–167 (1986).
[CrossRef]

K. Anders, N. Roth, A. Frohn, “Operation characteristics of vibrating-orifice generators as calibration standard for sizing methods and for the study of basic phenomena,” in Proceedings of the Second International Congress on Optical Particle Sizing. (Arizona State U. Press, Tempe, Ariz., 1990), pp. 325–334.

N. Roth, K. Anders, A. Frohn, “Refractive index measurements for the correction of particle sizing methods,” Appl. Opt. (to be published).

K. Anders, N. Roth, A. Frohn, “Study of the evaporation and combustion of droplets by a new optical sizing method,” in Proceedings of the Sixth International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, Toledo, Ohio, 1987), Vol. 63, pp. 205–214.

Bachalo, W. D.

W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23, 583–590 (1984).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Berglund, R. N.

R. N. Berglund, B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Tech. 7, 147–153 (1973).
[CrossRef]

Bowman, C. T.

C. P. Koshland, C. T. Bowman, “Combustion of monodis-perse droplet clouds in a reactive environment,” in Proceedings of the Twentieth Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984).

Chen, S. H.

Chiang, C. H.

C. H. Chiang, M. S. Raju, W. A. Sirignano, “Numerical analysis of convecting, vaporizing fuel droplet with variable properties,” in Proceedings of the AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, New York, 1989).

Clarke, A. E.

E. W. Stringer, A. E. Clarke, J. S. Clarke, “The spontaneous ignition of hydrocarbon fuels in a flowing system,” Proc. Inst. Mech. Eng. 184, 212–224 (1970).

Clarke, J. S.

E. W. Stringer, A. E. Clarke, J. S. Clarke, “The spontaneous ignition of hydrocarbon fuels in a flowing system,” Proc. Inst. Mech. Eng. 184, 212–224 (1970).

Corbin, F.

F. Corbin, G. Grehan, G. Gouesbet, B. Maheu, “Interaction between a sphere and a Gaussian beam: computations on a micro-computer,” Part. Syst. Charact. 5, 103–108 (1988).
[CrossRef]

Dwyer, H. A.

H. A. Dwyer, B. R. Sanders, “Calculations of Unsteady Reacting Droplet Flows,” in Proceedings of the Twenty-Second International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), p. 1923.

Fernandez-Pello, A. C.

A. C. Fernandez-Pello, C. K. Law, “A theory for free-convective burning of a condensed fuel particle,” Combust. Flame 44, 97–112 (1982).
[CrossRef]

Forsha, M. D.

T. E. Parker, M. D. Forsha, H. E. Steward, K. Hom, R. E. Sawyer, A. K. Oppenheim, “Induction period for ignition of fuel sprays at high temperatures and pressures,” in 1985 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1985), paper 850087.

Frohn, A.

G. König, K. Anders, A. Frohn, “A new light scattering technique to measure the diameter of periodically generated moving droplets,” J. Aerosol Sci. 17, 157–167 (1986).
[CrossRef]

N. Roth, K. Anders, A. Frohn, “Refractive index measurements for the correction of particle sizing methods,” Appl. Opt. (to be published).

K. Anders, N. Roth, A. Frohn, “Operation characteristics of vibrating-orifice generators as calibration standard for sizing methods and for the study of basic phenomena,” in Proceedings of the Second International Congress on Optical Particle Sizing. (Arizona State U. Press, Tempe, Ariz., 1990), pp. 325–334.

K. Anders, N. Roth, A. Frohn, “Study of the evaporation and combustion of droplets by a new optical sizing method,” in Proceedings of the Sixth International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, Toledo, Ohio, 1987), Vol. 63, pp. 205–214.

Glantschnig, W. J.

Gouesbet, G.

F. Corbin, G. Grehan, G. Gouesbet, B. Maheu, “Interaction between a sphere and a Gaussian beam: computations on a micro-computer,” Part. Syst. Charact. 5, 103–108 (1988).
[CrossRef]

G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[CrossRef]

Grehan, G.

G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[CrossRef]

F. Corbin, G. Grehan, G. Gouesbet, B. Maheu, “Interaction between a sphere and a Gaussian beam: computations on a micro-computer,” Part. Syst. Charact. 5, 103–108 (1988).
[CrossRef]

Heuer, M.

S. Röthele, H. Neuman, M. Heuer, “Die Anwendung der Fraunhofer Beugung unter 1 μm zur Partikelgrössenánalyse von 0.1 μm bis 2000 μm,” in Proceedings of the Fourth European Symposium on Particle Characterization (PARTEC) (Nürnberg Messe, Nürnberg, 1989).

Hom, K.

T. E. Parker, M. D. Forsha, H. E. Steward, K. Hom, R. E. Sawyer, A. K. Oppenheim, “Induction period for ignition of fuel sprays at high temperatures and pressures,” in 1985 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1985), paper 850087.

Houser, M. J.

W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23, 583–590 (1984).
[CrossRef]

König, G.

G. König, K. Anders, A. Frohn, “A new light scattering technique to measure the diameter of periodically generated moving droplets,” J. Aerosol Sci. 17, 157–167 (1986).
[CrossRef]

Koshland, C. P.

C. P. Koshland, C. T. Bowman, “Combustion of monodis-perse droplet clouds in a reactive environment,” in Proceedings of the Twentieth Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984).

Law, C. K.

A. C. Fernandez-Pello, C. K. Law, “A theory for free-convective burning of a condensed fuel particle,” Combust. Flame 44, 97–112 (1982).
[CrossRef]

Liu, B. Y. H.

R. N. Berglund, B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Tech. 7, 147–153 (1973).
[CrossRef]

Maheu, B.

F. Corbin, G. Grehan, G. Gouesbet, B. Maheu, “Interaction between a sphere and a Gaussian beam: computations on a micro-computer,” Part. Syst. Charact. 5, 103–108 (1988).
[CrossRef]

G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[CrossRef]

Mäkynen, J.

J. Mäkynen, “Optical particle counters: optimization of response functions,” J. Aerosol Sci. 19, 957–958 (1988).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Neuman, H.

S. Röthele, H. Neuman, M. Heuer, “Die Anwendung der Fraunhofer Beugung unter 1 μm zur Partikelgrössenánalyse von 0.1 μm bis 2000 μm,” in Proceedings of the Fourth European Symposium on Particle Characterization (PARTEC) (Nürnberg Messe, Nürnberg, 1989).

Oppenheim, A. K.

T. E. Parker, M. D. Forsha, H. E. Steward, K. Hom, R. E. Sawyer, A. K. Oppenheim, “Induction period for ignition of fuel sprays at high temperatures and pressures,” in 1985 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1985), paper 850087.

Parker, T. E.

T. E. Parker, M. D. Forsha, H. E. Steward, K. Hom, R. E. Sawyer, A. K. Oppenheim, “Induction period for ignition of fuel sprays at high temperatures and pressures,” in 1985 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1985), paper 850087.

Raju, M. S.

C. H. Chiang, M. S. Raju, W. A. Sirignano, “Numerical analysis of convecting, vaporizing fuel droplet with variable properties,” in Proceedings of the AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, New York, 1989).

Roth, N.

K. Anders, N. Roth, A. Frohn, “Study of the evaporation and combustion of droplets by a new optical sizing method,” in Proceedings of the Sixth International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, Toledo, Ohio, 1987), Vol. 63, pp. 205–214.

K. Anders, N. Roth, A. Frohn, “Operation characteristics of vibrating-orifice generators as calibration standard for sizing methods and for the study of basic phenomena,” in Proceedings of the Second International Congress on Optical Particle Sizing. (Arizona State U. Press, Tempe, Ariz., 1990), pp. 325–334.

N. Roth, K. Anders, A. Frohn, “Refractive index measurements for the correction of particle sizing methods,” Appl. Opt. (to be published).

Röthele, S.

S. Röthele, H. Neuman, M. Heuer, “Die Anwendung der Fraunhofer Beugung unter 1 μm zur Partikelgrössenánalyse von 0.1 μm bis 2000 μm,” in Proceedings of the Fourth European Symposium on Particle Characterization (PARTEC) (Nürnberg Messe, Nürnberg, 1989).

Sanders, B. R.

H. A. Dwyer, B. R. Sanders, “Calculations of Unsteady Reacting Droplet Flows,” in Proceedings of the Twenty-Second International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), p. 1923.

Sawyer, R. E.

T. E. Parker, M. D. Forsha, H. E. Steward, K. Hom, R. E. Sawyer, A. K. Oppenheim, “Induction period for ignition of fuel sprays at high temperatures and pressures,” in 1985 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1985), paper 850087.

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Sirignano, W. A.

C. H. Chiang, M. S. Raju, W. A. Sirignano, “Numerical analysis of convecting, vaporizing fuel droplet with variable properties,” in Proceedings of the AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, New York, 1989).

Spadaccini, L. J.

L. J. Spadaccini, J. A. TeVelde, “Autoignition of aircraft-type fuels,” Combust. Flame 46, 283–300 (1982).
[CrossRef]

Steward, H. E.

T. E. Parker, M. D. Forsha, H. E. Steward, K. Hom, R. E. Sawyer, A. K. Oppenheim, “Induction period for ignition of fuel sprays at high temperatures and pressures,” in 1985 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1985), paper 850087.

Stringer, E. W.

E. W. Stringer, A. E. Clarke, J. S. Clarke, “The spontaneous ignition of hydrocarbon fuels in a flowing system,” Proc. Inst. Mech. Eng. 184, 212–224 (1970).

TeVelde, J. A.

L. J. Spadaccini, J. A. TeVelde, “Autoignition of aircraft-type fuels,” Combust. Flame 46, 283–300 (1982).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Ann. Phys.

G. Mie, “Beiträge zur Optik trüber Medien,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Appl. Opt.

Combust. Flame

L. J. Spadaccini, J. A. TeVelde, “Autoignition of aircraft-type fuels,” Combust. Flame 46, 283–300 (1982).
[CrossRef]

A. C. Fernandez-Pello, C. K. Law, “A theory for free-convective burning of a condensed fuel particle,” Combust. Flame 44, 97–112 (1982).
[CrossRef]

Environ. Sci. Tech.

R. N. Berglund, B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Tech. 7, 147–153 (1973).
[CrossRef]

J. Aerosol Sci.

G. König, K. Anders, A. Frohn, “A new light scattering technique to measure the diameter of periodically generated moving droplets,” J. Aerosol Sci. 17, 157–167 (1986).
[CrossRef]

J. Mäkynen, “Optical particle counters: optimization of response functions,” J. Aerosol Sci. 19, 957–958 (1988).
[CrossRef]

J. Appl. Phys.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23, 583–590 (1984).
[CrossRef]

Part. Syst. Charact.

F. Corbin, G. Grehan, G. Gouesbet, B. Maheu, “Interaction between a sphere and a Gaussian beam: computations on a micro-computer,” Part. Syst. Charact. 5, 103–108 (1988).
[CrossRef]

Proc. Inst. Mech. Eng.

E. W. Stringer, A. E. Clarke, J. S. Clarke, “The spontaneous ignition of hydrocarbon fuels in a flowing system,” Proc. Inst. Mech. Eng. 184, 212–224 (1970).

Other

T. E. Parker, M. D. Forsha, H. E. Steward, K. Hom, R. E. Sawyer, A. K. Oppenheim, “Induction period for ignition of fuel sprays at high temperatures and pressures,” in 1985 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1985), paper 850087.

C. P. Koshland, C. T. Bowman, “Combustion of monodis-perse droplet clouds in a reactive environment,” in Proceedings of the Twentieth Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984).

K. Anders, N. Roth, A. Frohn, “Operation characteristics of vibrating-orifice generators as calibration standard for sizing methods and for the study of basic phenomena,” in Proceedings of the Second International Congress on Optical Particle Sizing. (Arizona State U. Press, Tempe, Ariz., 1990), pp. 325–334.

H. A. Dwyer, B. R. Sanders, “Calculations of Unsteady Reacting Droplet Flows,” in Proceedings of the Twenty-Second International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), p. 1923.

C. H. Chiang, M. S. Raju, W. A. Sirignano, “Numerical analysis of convecting, vaporizing fuel droplet with variable properties,” in Proceedings of the AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, New York, 1989).

K. Anders, N. Roth, A. Frohn, “Study of the evaporation and combustion of droplets by a new optical sizing method,” in Proceedings of the Sixth International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, Toledo, Ohio, 1987), Vol. 63, pp. 205–214.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

S. Röthele, H. Neuman, M. Heuer, “Die Anwendung der Fraunhofer Beugung unter 1 μm zur Partikelgrössenánalyse von 0.1 μm bis 2000 μm,” in Proceedings of the Fourth European Symposium on Particle Characterization (PARTEC) (Nürnberg Messe, Nürnberg, 1989).

N. Roth, K. Anders, A. Frohn, “Refractive index measurements for the correction of particle sizing methods,” Appl. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the apparatus used for the investigation of monosized droplet streams under a high temperature air flow. (The droplets are not to scale.)

Fig. 2
Fig. 2

Scattering pattern obtained from droplets that are 41 μm in diameter illuminated by a laser. The droplets in the center are hit by a beam coming from the right. The scattering angles are indicated.

Fig. 3
Fig. 3

Experimental verification of Eq. (2) for dimensionless fringe spacing. The solid curve shows the calculated values, whereas the circles are experimentally derived data.

Fig. 4
Fig. 4

Schematic view of the experimental apparatus and physical setup. The coordinate system used in this paper is shown.

Fig. 5
Fig. 5

Dimensionless fringe spacing fs/fs* as a function of the z coordinate. The droplet diameter is 50 μm. No beam expansion is applied. The waist diameter is ∼ 280 μm.

Fig. 6
Fig. 6

Dimensionless fringe spacing fs/fs* as a function of the z coordinate. The droplet diameter is 89.6 μm. Here a beam expansion obtained by using lenses of 14- and 80-mm focal length is applied. The waist diameter is ∼ 130 μm.

Fig. 7
Fig. 7

Dimensionless fringe spacing fs/fs* as a function of the z coordinate. The droplet diameter is 52 μm. Here a beam expansion obtained by using lenses of 14- and 500-mm focal length is applied. The waist diameter is ∼ 60 μm.

Fig. 8
Fig. 8

Dimensionless fringe spacing fs/fs* as a function of the z coordinate. The droplet diameter is 89.6 μm. Here a beam expansion obtained by using lenses of 14- and 500-mm focal lengths is applied. The waist diameter is ∼ 60 μm.

Fig. 9
Fig. 9

Dimensionless fringe spacing fs/fs* as a function of the y coordinate for z = 20 mm. The droplet diameter is 52 μm. Here a beam expansion obtained by using lenses with 14- and 500-mm focal lengths is applied.

Fig. 10
Fig. 10

Dimensionless fringe spacing fs/fs* as a function of the y coordinate for z = 14 mm. The droplet diameter is 52 μm. Here a beam expansion obtained by using lenses with 14- and 500-mm focal lengths is applied. To allow comparison with Fig. 9 the same scale was used.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α = π d T λ ,
D = Δ θ M d T λ = 2 cos ( θ / 2 ) + m sin ( θ / 2 ) [ 1 + m 2 2 m cos ( θ / 2 ) ] 1 / 2 .

Metrics