J. A. Lock, “Cooperative effects among partial waves in Mie scattering,” J. Opt. Soc. Am. A 5, 2032–2044 (1988).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

B. Maheu, G. Gouesbet, G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. Paris 19, 59–67 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]
[PubMed]

J. F. Nye, “Rainbow scattering from spheroidal drops—an explanation of the hyperbolic umbilic foci,” Nature (London) 312, 531–532 (1984).

[CrossRef]

P. L. Marston, E. H. Trinh, “Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops,” Nature (London) 312, 529–531 (1984).

[CrossRef]

J. Walker, “Mysteries of rainbows, notably their rare supernumerary arcs,” Sci. Am. 242, 147–152 (June1980).

J. Walker, “How to create and observe a dozen rainbows in a single drop of water,” Sci. Am. 237, 138–144 (July1977).

[CrossRef]

J. D. Walker, “Multiple rainbows from single drops of water and other liquids,” Am. J. Phys. 44, 421–433 (1976).

[CrossRef]

S. A. Schaub, D. R. Alexander, J. P. Barton, “Modeling of a coherent imaging system,” in Proceedings of the Second International Congress on Optical Particle Sizing, E. D. Hirleman, ed. (Arizona State University, Tempe, Ariz., 1990), pp. 239–250.

S. A. Schaub, D. R. Alexander, J. P. Barton, “Modeling of a coherent imaging system,” in Proceedings of the Second International Congress on Optical Particle Sizing, E. D. Hirleman, ed. (Arizona State University, Tempe, Ariz., 1990), pp. 239–250.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

B. Maheu, G. Gouesbet, G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. Paris 19, 59–67 (1988).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]
[PubMed]

G. Gouesbet, G. Gréhan, B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]
[PubMed]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

B. Maheu, G. Gouesbet, G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. Paris 19, 59–67 (1988).

[CrossRef]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

V. Khare, H. M. Nussenzveig, “The Theory of the Glory,” in Statistical Mechanics and Statistical Methods in Theory and Application, U. Landman, ed. (Plenum, New York, 1977), pp. 723–764.

[CrossRef]

J. A. Lock, J. R. Woodruff, “Non-Debye enhancements in the Mie scattering of light from a single water droplet,” Appl. Opt. 28, 523–529 (1989).

[CrossRef]
[PubMed]

J. A. Lock, “Cooperative effects among partial waves in Mie scattering,” J. Opt. Soc. Am. A 5, 2032–2044 (1988).

[CrossRef]

J. A. Lock, “Theory of the observations made of high-order rainbows from a single water droplet,” Appl. Opt. 26, 5291–5298 (1987).

[CrossRef]
[PubMed]

B. Maheu, G. Gouesbet, G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. Paris 19, 59–67 (1988).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]
[PubMed]

P. L. Marston, E. H. Trinh, “Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops,” Nature (London) 312, 529–531 (1984).

[CrossRef]

H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079 (1979).

[CrossRef]

V. Khare, H. M. Nussenzveig, “The Theory of the Glory,” in Statistical Mechanics and Statistical Methods in Theory and Application, U. Landman, ed. (Plenum, New York, 1977), pp. 723–764.

[CrossRef]

J. F. Nye, “Rainbow scattering from spheroidal drops—an explanation of the hyperbolic umbilic foci,” Nature (London) 312, 531–532 (1984).

[CrossRef]

S. A. Schaub, D. R. Alexander, J. P. Barton, “Modeling of a coherent imaging system,” in Proceedings of the Second International Congress on Optical Particle Sizing, E. D. Hirleman, ed. (Arizona State University, Tempe, Ariz., 1990), pp. 239–250.

P. L. Marston, E. H. Trinh, “Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops,” Nature (London) 312, 529–531 (1984).

[CrossRef]

R. T. Wang, H. C. van de Hulst, “Rainbows: Mie computation and the Airy approximation,” Appl. Opt. 30, 106–117 (1991).

[CrossRef]
[PubMed]

H. C. van de Hulst, “A theory of the anti-coronae,” J. Opt. Soc. Am. 37, 16–22 (1947).

[CrossRef]

H. C. van de Hulst, Multiple Light Scattering. Tables, Formulas, and Applications (Academic, New York, 1980).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957;H. C. van de Hulst, Light Scattering by Small ParticlesDover, New York, 1981).

J. Walker, “Mysteries of rainbows, notably their rare supernumerary arcs,” Sci. Am. 242, 147–152 (June1980).

J. Walker, “How to create and observe a dozen rainbows in a single drop of water,” Sci. Am. 237, 138–144 (July1977).

[CrossRef]

J. D. Walker, “Multiple rainbows from single drops of water and other liquids,” Am. J. Phys. 44, 421–433 (1976).

[CrossRef]

J. D. Walker, “Multiple rainbows from single drops of water and other liquids,” Am. J. Phys. 44, 421–433 (1976).

[CrossRef]

J. A. Lock, “Theory of the observations made of high-order rainbows from a single water droplet,” Appl. Opt. 26, 5291–5298 (1987).

[CrossRef]
[PubMed]

J. A. Lock, J. R. Woodruff, “Non-Debye enhancements in the Mie scattering of light from a single water droplet,” Appl. Opt. 28, 523–529 (1989).

[CrossRef]
[PubMed]

R. T. Wang, H. C. van de Hulst, “Rainbows: Mie computation and the Airy approximation,” Appl. Opt. 30, 106–117 (1991).

[CrossRef]
[PubMed]

G. Gouesbet, G. Gréhan, B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]
[PubMed]

B. Maheu, G. Gouesbet, G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. Paris 19, 59–67 (1988).

[CrossRef]

J. F. Nye, “Rainbow scattering from spheroidal drops—an explanation of the hyperbolic umbilic foci,” Nature (London) 312, 531–532 (1984).

[CrossRef]

P. L. Marston, E. H. Trinh, “Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops,” Nature (London) 312, 529–531 (1984).

[CrossRef]

J. Walker, “How to create and observe a dozen rainbows in a single drop of water,” Sci. Am. 237, 138–144 (July1977).

[CrossRef]

J. Walker, “Mysteries of rainbows, notably their rare supernumerary arcs,” Sci. Am. 242, 147–152 (June1980).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957;H. C. van de Hulst, Light Scattering by Small ParticlesDover, New York, 1981).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

V. Khare, H. M. Nussenzveig, “The Theory of the Glory,” in Statistical Mechanics and Statistical Methods in Theory and Application, U. Landman, ed. (Plenum, New York, 1977), pp. 723–764.

[CrossRef]

H. C. van de Hulst, Multiple Light Scattering. Tables, Formulas, and Applications (Academic, New York, 1980).

S. A. Schaub, D. R. Alexander, J. P. Barton, “Modeling of a coherent imaging system,” in Proceedings of the Second International Congress on Optical Particle Sizing, E. D. Hirleman, ed. (Arizona State University, Tempe, Ariz., 1990), pp. 239–250.