Abstract

Good optical-quality SiON layers deposited upon a SiO2 buffer layer placed upon silicon wafers have been obtained by using plasma-enhanced chemical vapor deposition from SiH4, NH3, and N2O. Optical planar waveguides with a thickness of 5 μm and a refractive index of 1.470 have been deposited and investigated in the wavelength region of 1.3–1.6 μm. Three absorption bands at 1.40, 1.48, and 1.54 μm have been detected and interpreted as Si–OH, N–H, and Si–H vibrational modes, respectively. Absorption losses of 3.8 dB/cm at 1.4 μm and 3.2 dB/cm at 1.51 μm have been measured. A mild annealing at ∼800°C completely removes the band at 1.40 μm, whereas strong reduction of absorption at 1.51 μm requires 3 h of annealing at 1100°C. As a result, propagation losses of 0.36 to 0.54 dB/cm have been measured at 1.54-μm wavelength.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Rand, R. D. Standley, “Silicon oxynitride films and fused silica for optical waveguides,” Appl. Opt. 11, 2482–2488 (1972).
    [CrossRef] [PubMed]
  2. I. K. Naik, “Low loss integrated optical waveguides fabricated by nitrogen ion implantation,” Appl. Phys. Lett. 43, 519–520 (1983).
    [CrossRef]
  3. D. K. W. Lam, “Low temperature plasma chemical vapor deposition of silicon oxynitride thin film waveguides,” Appl. Opt. 23, 2744–2746 (1984).
    [CrossRef] [PubMed]
  4. D. E. Zelmon, J. T. Boyd, H. E. Jackson, “Low loss optical waveguides fabricated by thermal nitridation of oxidized silicon,” Appl. Phys. Lett. 47, 353–355 (1985).
    [CrossRef]
  5. J. Jacob, W. Shaube, E. H. Unger, “Silicon oxide and oxynitride waveguides for integrated optics,” Arch. Elektron. Uebertragungstech. 41, 182–185 (1987).
  6. M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
    [CrossRef]
  7. S. Valette, P. Mottier, J. Lizet, P. Gidon, J. P. Jadot, D. Villani, “Integrated optics on silicon substrate: a way to achieve complex optical circuits,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 94–101 (1986).
  8. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low loss Si3N4–SiO2 optical waveguides on Si,” Appl. Opt. 26, 2621–2624 (1987).
    [CrossRef] [PubMed]
  9. D. E. Bossi, J. M. Hammer, J. M. Shaw, “Optical properties of silicon oxynitride dielectric waveguides,” Appl. Opt. 26, 609–611 (1987).
    [CrossRef] [PubMed]
  10. T. S. Eriksson, C. G. Granqvist, “Infrared optical proper ties of silicon oxynitride films: experimental data and theoret ical interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
    [CrossRef]
  11. R. Chow, W. A. Landford, W. Ke-Ming, R. S. Rosier, “Hydrogen content of a variety of plasma deposited silicon nitrides,” J. Appl. Phys. 53, 5630–5633 (1982).
    [CrossRef]
  12. A. E. T. Kuiper, M. F. C. Willemsen, L. J. van Ijzendoorn, “Hydrogen incorporation in silicon (oxy)nitride thin films,” Appl. Phys. Lett. 53, 2149–2151 (1988).
    [CrossRef]
  13. C. M. M. Denisse, K. Z. Troost, F. H. P. M. Habraken, W. F. van der Werg, “Annealing of plasma silicon oxynitride films,” J. Appl. Phys. 60, 2543–2547 (1986).
    [CrossRef]
  14. R. W. Hoffman, “The mechanical properties of thin condensed films,” in Phys. Thin Films (1966). G. Haas, R. E. Thun, eds. (Academic, New York, 1966).

1988 (1)

A. E. T. Kuiper, M. F. C. Willemsen, L. J. van Ijzendoorn, “Hydrogen incorporation in silicon (oxy)nitride thin films,” Appl. Phys. Lett. 53, 2149–2151 (1988).
[CrossRef]

1987 (3)

1986 (2)

T. S. Eriksson, C. G. Granqvist, “Infrared optical proper ties of silicon oxynitride films: experimental data and theoret ical interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[CrossRef]

C. M. M. Denisse, K. Z. Troost, F. H. P. M. Habraken, W. F. van der Werg, “Annealing of plasma silicon oxynitride films,” J. Appl. Phys. 60, 2543–2547 (1986).
[CrossRef]

1985 (1)

D. E. Zelmon, J. T. Boyd, H. E. Jackson, “Low loss optical waveguides fabricated by thermal nitridation of oxidized silicon,” Appl. Phys. Lett. 47, 353–355 (1985).
[CrossRef]

1984 (1)

1983 (2)

I. K. Naik, “Low loss integrated optical waveguides fabricated by nitrogen ion implantation,” Appl. Phys. Lett. 43, 519–520 (1983).
[CrossRef]

M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[CrossRef]

1982 (1)

R. Chow, W. A. Landford, W. Ke-Ming, R. S. Rosier, “Hydrogen content of a variety of plasma deposited silicon nitrides,” J. Appl. Phys. 53, 5630–5633 (1982).
[CrossRef]

1972 (1)

Bossi, D. E.

Boyd, J. T.

D. E. Zelmon, J. T. Boyd, H. E. Jackson, “Low loss optical waveguides fabricated by thermal nitridation of oxidized silicon,” Appl. Phys. Lett. 47, 353–355 (1985).
[CrossRef]

Chow, R.

R. Chow, W. A. Landford, W. Ke-Ming, R. S. Rosier, “Hydrogen content of a variety of plasma deposited silicon nitrides,” J. Appl. Phys. 53, 5630–5633 (1982).
[CrossRef]

Denisse, C. M. M.

C. M. M. Denisse, K. Z. Troost, F. H. P. M. Habraken, W. F. van der Werg, “Annealing of plasma silicon oxynitride films,” J. Appl. Phys. 60, 2543–2547 (1986).
[CrossRef]

Edahiro, T.

M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[CrossRef]

Eriksson, T. S.

T. S. Eriksson, C. G. Granqvist, “Infrared optical proper ties of silicon oxynitride films: experimental data and theoret ical interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[CrossRef]

Gidon, P.

S. Valette, P. Mottier, J. Lizet, P. Gidon, J. P. Jadot, D. Villani, “Integrated optics on silicon substrate: a way to achieve complex optical circuits,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 94–101 (1986).

Granqvist, C. G.

T. S. Eriksson, C. G. Granqvist, “Infrared optical proper ties of silicon oxynitride films: experimental data and theoret ical interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[CrossRef]

Habraken, F. H. P. M.

C. M. M. Denisse, K. Z. Troost, F. H. P. M. Habraken, W. F. van der Werg, “Annealing of plasma silicon oxynitride films,” J. Appl. Phys. 60, 2543–2547 (1986).
[CrossRef]

Hammer, J. M.

Henry, C. H.

Hoffman, R. W.

R. W. Hoffman, “The mechanical properties of thin condensed films,” in Phys. Thin Films (1966). G. Haas, R. E. Thun, eds. (Academic, New York, 1966).

Jackson, H. E.

D. E. Zelmon, J. T. Boyd, H. E. Jackson, “Low loss optical waveguides fabricated by thermal nitridation of oxidized silicon,” Appl. Phys. Lett. 47, 353–355 (1985).
[CrossRef]

Jacob, J.

J. Jacob, W. Shaube, E. H. Unger, “Silicon oxide and oxynitride waveguides for integrated optics,” Arch. Elektron. Uebertragungstech. 41, 182–185 (1987).

Jadot, J. P.

S. Valette, P. Mottier, J. Lizet, P. Gidon, J. P. Jadot, D. Villani, “Integrated optics on silicon substrate: a way to achieve complex optical circuits,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 94–101 (1986).

Katz, L. E.

Kawachi, M.

M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[CrossRef]

Kazarinov, R. F.

Ke-Ming, W.

R. Chow, W. A. Landford, W. Ke-Ming, R. S. Rosier, “Hydrogen content of a variety of plasma deposited silicon nitrides,” J. Appl. Phys. 53, 5630–5633 (1982).
[CrossRef]

Kuiper, A. E. T.

A. E. T. Kuiper, M. F. C. Willemsen, L. J. van Ijzendoorn, “Hydrogen incorporation in silicon (oxy)nitride thin films,” Appl. Phys. Lett. 53, 2149–2151 (1988).
[CrossRef]

Lam, D. K. W.

Landford, W. A.

R. Chow, W. A. Landford, W. Ke-Ming, R. S. Rosier, “Hydrogen content of a variety of plasma deposited silicon nitrides,” J. Appl. Phys. 53, 5630–5633 (1982).
[CrossRef]

Lee, H. J.

Lizet, J.

S. Valette, P. Mottier, J. Lizet, P. Gidon, J. P. Jadot, D. Villani, “Integrated optics on silicon substrate: a way to achieve complex optical circuits,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 94–101 (1986).

Mottier, P.

S. Valette, P. Mottier, J. Lizet, P. Gidon, J. P. Jadot, D. Villani, “Integrated optics on silicon substrate: a way to achieve complex optical circuits,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 94–101 (1986).

Naik, I. K.

I. K. Naik, “Low loss integrated optical waveguides fabricated by nitrogen ion implantation,” Appl. Phys. Lett. 43, 519–520 (1983).
[CrossRef]

Orlowsky, K. J.

Rand, M. J.

Rosier, R. S.

R. Chow, W. A. Landford, W. Ke-Ming, R. S. Rosier, “Hydrogen content of a variety of plasma deposited silicon nitrides,” J. Appl. Phys. 53, 5630–5633 (1982).
[CrossRef]

Shaube, W.

J. Jacob, W. Shaube, E. H. Unger, “Silicon oxide and oxynitride waveguides for integrated optics,” Arch. Elektron. Uebertragungstech. 41, 182–185 (1987).

Shaw, J. M.

Standley, R. D.

Troost, K. Z.

C. M. M. Denisse, K. Z. Troost, F. H. P. M. Habraken, W. F. van der Werg, “Annealing of plasma silicon oxynitride films,” J. Appl. Phys. 60, 2543–2547 (1986).
[CrossRef]

Unger, E. H.

J. Jacob, W. Shaube, E. H. Unger, “Silicon oxide and oxynitride waveguides for integrated optics,” Arch. Elektron. Uebertragungstech. 41, 182–185 (1987).

Valette, S.

S. Valette, P. Mottier, J. Lizet, P. Gidon, J. P. Jadot, D. Villani, “Integrated optics on silicon substrate: a way to achieve complex optical circuits,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 94–101 (1986).

van der Werg, W. F.

C. M. M. Denisse, K. Z. Troost, F. H. P. M. Habraken, W. F. van der Werg, “Annealing of plasma silicon oxynitride films,” J. Appl. Phys. 60, 2543–2547 (1986).
[CrossRef]

van Ijzendoorn, L. J.

A. E. T. Kuiper, M. F. C. Willemsen, L. J. van Ijzendoorn, “Hydrogen incorporation in silicon (oxy)nitride thin films,” Appl. Phys. Lett. 53, 2149–2151 (1988).
[CrossRef]

Villani, D.

S. Valette, P. Mottier, J. Lizet, P. Gidon, J. P. Jadot, D. Villani, “Integrated optics on silicon substrate: a way to achieve complex optical circuits,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 94–101 (1986).

Willemsen, M. F. C.

A. E. T. Kuiper, M. F. C. Willemsen, L. J. van Ijzendoorn, “Hydrogen incorporation in silicon (oxy)nitride thin films,” Appl. Phys. Lett. 53, 2149–2151 (1988).
[CrossRef]

Yasu, M.

M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[CrossRef]

Zelmon, D. E.

D. E. Zelmon, J. T. Boyd, H. E. Jackson, “Low loss optical waveguides fabricated by thermal nitridation of oxidized silicon,” Appl. Phys. Lett. 47, 353–355 (1985).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

I. K. Naik, “Low loss integrated optical waveguides fabricated by nitrogen ion implantation,” Appl. Phys. Lett. 43, 519–520 (1983).
[CrossRef]

D. E. Zelmon, J. T. Boyd, H. E. Jackson, “Low loss optical waveguides fabricated by thermal nitridation of oxidized silicon,” Appl. Phys. Lett. 47, 353–355 (1985).
[CrossRef]

A. E. T. Kuiper, M. F. C. Willemsen, L. J. van Ijzendoorn, “Hydrogen incorporation in silicon (oxy)nitride thin films,” Appl. Phys. Lett. 53, 2149–2151 (1988).
[CrossRef]

Arch. Elektron. Uebertragungstech. (1)

J. Jacob, W. Shaube, E. H. Unger, “Silicon oxide and oxynitride waveguides for integrated optics,” Arch. Elektron. Uebertragungstech. 41, 182–185 (1987).

Electron. Lett. (1)

M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[CrossRef]

J. Appl. Phys. (3)

C. M. M. Denisse, K. Z. Troost, F. H. P. M. Habraken, W. F. van der Werg, “Annealing of plasma silicon oxynitride films,” J. Appl. Phys. 60, 2543–2547 (1986).
[CrossRef]

T. S. Eriksson, C. G. Granqvist, “Infrared optical proper ties of silicon oxynitride films: experimental data and theoret ical interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[CrossRef]

R. Chow, W. A. Landford, W. Ke-Ming, R. S. Rosier, “Hydrogen content of a variety of plasma deposited silicon nitrides,” J. Appl. Phys. 53, 5630–5633 (1982).
[CrossRef]

Other (2)

R. W. Hoffman, “The mechanical properties of thin condensed films,” in Phys. Thin Films (1966). G. Haas, R. E. Thun, eds. (Academic, New York, 1966).

S. Valette, P. Mottier, J. Lizet, P. Gidon, J. P. Jadot, D. Villani, “Integrated optics on silicon substrate: a way to achieve complex optical circuits,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 94–101 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Refractive index versus silane (lower curve) and ammonia (upper curve) partial pressure for SiO2 and SiON films, respec tively, at 0.6328-μm wavelength. The total process pressure was 21 Pa, the rf power was 10 W, and T = 380°C. The arrows show the selected deposition conditions.

Fig. 2
Fig. 2

Experimental setup for the waveguides infrared spectra measurements. PH. 1, PH. 2, photodiodes.

Fig. 3
Fig. 3

Transmission spectra for a waveguide unannealed (lower curve) and annealed for 3 h at 1100°C (upper curve).

Fig. 4
Fig. 4

Temperature behavior of the hydrogen content of doped silica films versus annealing temperature. The y axis shows the absorption peak area of Si–H + NH and Si–OH bonds, in arbitrary units.

Fig. 5
Fig. 5

Experimental results of the cutback method.

Tables (2)

Tables Icon

Table I Refractive-Index Variation After Annealing at λ = 0.6328 μm

Tables Icon

Table II Synchronous Angle, Average Loss, and Effective Index for the TE Fundamental Mode of a Typical Planar Waveguide (λ = 0.6328 μm)

Metrics