Abstract

Rate equations have been used to analyze the variations of the outputs from the facets of the diodes being coated during the antireflection-coating process. Good agreement between the experimental recordings and theoretical predictions has been achieved. As a result, an auxiliary criterion for on-time assessment of the antireflection coating has been established.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Saitoh, T. Mukai, “1.5 μm GalnAsP traveling wave semiconductor laser amplifier,” IEEE J. Quantum Electron. QE-23, 1010–1020 (1987).
    [Crossref]
  2. D. J. Malyon, R. C. Steele, M. J. Creaner, M. C. Brain, W. A. Stallard, “Coherent optical transmission at 565 Mbit/s through five cascade photonic amplifiers,” Electron. Lett. 25, 354–356 (1989).
    [Crossref]
  3. B. Mikkelsen, D. S. Olsson, K. E. Stubkjaer, Z. Wang, A. J. Collar, G. D. Henshall, “Temperature-dependent gain and noise of 1.5 μm laser amplifiers,” Electron. Lett. 25, 357–358 (1989).
    [Crossref]
  4. M. Sumida, M. Koga, “Practical gain of in-line semiconductor laser amplifiers,” Electron. Lett. 25, 875–877 (1989).
    [Crossref]
  5. G. Eisenstein, L. W. Stulz, L. G. van Uitert, “Antireflection coatings on semiconductor laser facets using sputtered lead silicate glass,” IEEE J. Lightwave Technol. LT-4, 1314– 1315 (1986).
  6. N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser amplifier,” Electron. Lett. 24, 569–570 (1988).
    [Crossref]
  7. T. Saitoh, T. Mukai, N. Y. Noguchi, “Fabrication and gain characteristics of a 1.5 μm GalnAsP traveling-wave optical amplifier,” presented at the First Optoelectronics Conference, Tokyo, 1986.
  8. T. Saitoh, T. Mukai, O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser diode facets,” IEEE J. Lightwave Technol. LT-3, 288–293 (1985).
    [Crossref]
  9. D. Marcuse, “Computer model of an injection laser amplifier,” IEEE J. Quantum Electron. QE-19, 63–73 (1983).
    [Crossref]
  10. G. Eisenstein, “Theoretical design of single-layer antireflection coatings on laser facets,” Bell Syst. Tech. J. 63, 357 (1984).
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), pp. 61–66.
  12. I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurements of the model reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
    [Crossref]
  13. G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980), pp. 111–115.
  14. T. Saitoh, T. Mukai, “Recent progress in semiconductor laser amplifiers,” IEEE J. Lightwave Technol. 6, 1656–1664 (1988).
    [Crossref]

1989 (3)

D. J. Malyon, R. C. Steele, M. J. Creaner, M. C. Brain, W. A. Stallard, “Coherent optical transmission at 565 Mbit/s through five cascade photonic amplifiers,” Electron. Lett. 25, 354–356 (1989).
[Crossref]

B. Mikkelsen, D. S. Olsson, K. E. Stubkjaer, Z. Wang, A. J. Collar, G. D. Henshall, “Temperature-dependent gain and noise of 1.5 μm laser amplifiers,” Electron. Lett. 25, 357–358 (1989).
[Crossref]

M. Sumida, M. Koga, “Practical gain of in-line semiconductor laser amplifiers,” Electron. Lett. 25, 875–877 (1989).
[Crossref]

1988 (2)

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser amplifier,” Electron. Lett. 24, 569–570 (1988).
[Crossref]

T. Saitoh, T. Mukai, “Recent progress in semiconductor laser amplifiers,” IEEE J. Lightwave Technol. 6, 1656–1664 (1988).
[Crossref]

1987 (1)

T. Saitoh, T. Mukai, “1.5 μm GalnAsP traveling wave semiconductor laser amplifier,” IEEE J. Quantum Electron. QE-23, 1010–1020 (1987).
[Crossref]

1986 (1)

G. Eisenstein, L. W. Stulz, L. G. van Uitert, “Antireflection coatings on semiconductor laser facets using sputtered lead silicate glass,” IEEE J. Lightwave Technol. LT-4, 1314– 1315 (1986).

1985 (1)

T. Saitoh, T. Mukai, O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser diode facets,” IEEE J. Lightwave Technol. LT-3, 288–293 (1985).
[Crossref]

1984 (1)

G. Eisenstein, “Theoretical design of single-layer antireflection coatings on laser facets,” Bell Syst. Tech. J. 63, 357 (1984).

1983 (2)

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurements of the model reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[Crossref]

D. Marcuse, “Computer model of an injection laser amplifier,” IEEE J. Quantum Electron. QE-19, 63–73 (1983).
[Crossref]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), pp. 61–66.

Brain, M. C.

D. J. Malyon, R. C. Steele, M. J. Creaner, M. C. Brain, W. A. Stallard, “Coherent optical transmission at 565 Mbit/s through five cascade photonic amplifiers,” Electron. Lett. 25, 354–356 (1989).
[Crossref]

Cella, T.

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser amplifier,” Electron. Lett. 24, 569–570 (1988).
[Crossref]

Collar, A. J.

B. Mikkelsen, D. S. Olsson, K. E. Stubkjaer, Z. Wang, A. J. Collar, G. D. Henshall, “Temperature-dependent gain and noise of 1.5 μm laser amplifiers,” Electron. Lett. 25, 357–358 (1989).
[Crossref]

Creaner, M. J.

D. J. Malyon, R. C. Steele, M. J. Creaner, M. C. Brain, W. A. Stallard, “Coherent optical transmission at 565 Mbit/s through five cascade photonic amplifiers,” Electron. Lett. 25, 354–356 (1989).
[Crossref]

Eisenstein, G.

G. Eisenstein, L. W. Stulz, L. G. van Uitert, “Antireflection coatings on semiconductor laser facets using sputtered lead silicate glass,” IEEE J. Lightwave Technol. LT-4, 1314– 1315 (1986).

G. Eisenstein, “Theoretical design of single-layer antireflection coatings on laser facets,” Bell Syst. Tech. J. 63, 357 (1984).

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurements of the model reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[Crossref]

Henshall, G. D.

B. Mikkelsen, D. S. Olsson, K. E. Stubkjaer, Z. Wang, A. J. Collar, G. D. Henshall, “Temperature-dependent gain and noise of 1.5 μm laser amplifiers,” Electron. Lett. 25, 357–358 (1989).
[Crossref]

Kaminow, I. P.

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurements of the model reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[Crossref]

Koga, M.

M. Sumida, M. Koga, “Practical gain of in-line semiconductor laser amplifiers,” Electron. Lett. 25, 875–877 (1989).
[Crossref]

Malyon, D. J.

D. J. Malyon, R. C. Steele, M. J. Creaner, M. C. Brain, W. A. Stallard, “Coherent optical transmission at 565 Mbit/s through five cascade photonic amplifiers,” Electron. Lett. 25, 354–356 (1989).
[Crossref]

Marcuse, D.

D. Marcuse, “Computer model of an injection laser amplifier,” IEEE J. Quantum Electron. QE-19, 63–73 (1983).
[Crossref]

Mikami, O.

T. Saitoh, T. Mukai, O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser diode facets,” IEEE J. Lightwave Technol. LT-3, 288–293 (1985).
[Crossref]

Mikkelsen, B.

B. Mikkelsen, D. S. Olsson, K. E. Stubkjaer, Z. Wang, A. J. Collar, G. D. Henshall, “Temperature-dependent gain and noise of 1.5 μm laser amplifiers,” Electron. Lett. 25, 357–358 (1989).
[Crossref]

Mukai, T.

T. Saitoh, T. Mukai, “Recent progress in semiconductor laser amplifiers,” IEEE J. Lightwave Technol. 6, 1656–1664 (1988).
[Crossref]

T. Saitoh, T. Mukai, “1.5 μm GalnAsP traveling wave semiconductor laser amplifier,” IEEE J. Quantum Electron. QE-23, 1010–1020 (1987).
[Crossref]

T. Saitoh, T. Mukai, O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser diode facets,” IEEE J. Lightwave Technol. LT-3, 288–293 (1985).
[Crossref]

T. Saitoh, T. Mukai, N. Y. Noguchi, “Fabrication and gain characteristics of a 1.5 μm GalnAsP traveling-wave optical amplifier,” presented at the First Optoelectronics Conference, Tokyo, 1986.

Noguchi, N. Y.

T. Saitoh, T. Mukai, N. Y. Noguchi, “Fabrication and gain characteristics of a 1.5 μm GalnAsP traveling-wave optical amplifier,” presented at the First Optoelectronics Conference, Tokyo, 1986.

Oberg, M. G.

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser amplifier,” Electron. Lett. 24, 569–570 (1988).
[Crossref]

Olsson, D. S.

B. Mikkelsen, D. S. Olsson, K. E. Stubkjaer, Z. Wang, A. J. Collar, G. D. Henshall, “Temperature-dependent gain and noise of 1.5 μm laser amplifiers,” Electron. Lett. 25, 357–358 (1989).
[Crossref]

Olsson, N. A.

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser amplifier,” Electron. Lett. 24, 569–570 (1988).
[Crossref]

Saitoh, T.

T. Saitoh, T. Mukai, “Recent progress in semiconductor laser amplifiers,” IEEE J. Lightwave Technol. 6, 1656–1664 (1988).
[Crossref]

T. Saitoh, T. Mukai, “1.5 μm GalnAsP traveling wave semiconductor laser amplifier,” IEEE J. Quantum Electron. QE-23, 1010–1020 (1987).
[Crossref]

T. Saitoh, T. Mukai, O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser diode facets,” IEEE J. Lightwave Technol. LT-3, 288–293 (1985).
[Crossref]

T. Saitoh, T. Mukai, N. Y. Noguchi, “Fabrication and gain characteristics of a 1.5 μm GalnAsP traveling-wave optical amplifier,” presented at the First Optoelectronics Conference, Tokyo, 1986.

Stallard, W. A.

D. J. Malyon, R. C. Steele, M. J. Creaner, M. C. Brain, W. A. Stallard, “Coherent optical transmission at 565 Mbit/s through five cascade photonic amplifiers,” Electron. Lett. 25, 354–356 (1989).
[Crossref]

Steele, R. C.

D. J. Malyon, R. C. Steele, M. J. Creaner, M. C. Brain, W. A. Stallard, “Coherent optical transmission at 565 Mbit/s through five cascade photonic amplifiers,” Electron. Lett. 25, 354–356 (1989).
[Crossref]

Stubkjaer, K. E.

B. Mikkelsen, D. S. Olsson, K. E. Stubkjaer, Z. Wang, A. J. Collar, G. D. Henshall, “Temperature-dependent gain and noise of 1.5 μm laser amplifiers,” Electron. Lett. 25, 357–358 (1989).
[Crossref]

Stulz, L. W.

G. Eisenstein, L. W. Stulz, L. G. van Uitert, “Antireflection coatings on semiconductor laser facets using sputtered lead silicate glass,” IEEE J. Lightwave Technol. LT-4, 1314– 1315 (1986).

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurements of the model reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[Crossref]

Sumida, M.

M. Sumida, M. Koga, “Practical gain of in-line semiconductor laser amplifiers,” Electron. Lett. 25, 875–877 (1989).
[Crossref]

Thompson, G. H. B.

G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980), pp. 111–115.

Tzeng, L. D.

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser amplifier,” Electron. Lett. 24, 569–570 (1988).
[Crossref]

van Uitert, L. G.

G. Eisenstein, L. W. Stulz, L. G. van Uitert, “Antireflection coatings on semiconductor laser facets using sputtered lead silicate glass,” IEEE J. Lightwave Technol. LT-4, 1314– 1315 (1986).

Wang, Z.

B. Mikkelsen, D. S. Olsson, K. E. Stubkjaer, Z. Wang, A. J. Collar, G. D. Henshall, “Temperature-dependent gain and noise of 1.5 μm laser amplifiers,” Electron. Lett. 25, 357–358 (1989).
[Crossref]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), pp. 61–66.

Bell Syst. Tech. J. (1)

G. Eisenstein, “Theoretical design of single-layer antireflection coatings on laser facets,” Bell Syst. Tech. J. 63, 357 (1984).

Electron. Lett. (4)

D. J. Malyon, R. C. Steele, M. J. Creaner, M. C. Brain, W. A. Stallard, “Coherent optical transmission at 565 Mbit/s through five cascade photonic amplifiers,” Electron. Lett. 25, 354–356 (1989).
[Crossref]

B. Mikkelsen, D. S. Olsson, K. E. Stubkjaer, Z. Wang, A. J. Collar, G. D. Henshall, “Temperature-dependent gain and noise of 1.5 μm laser amplifiers,” Electron. Lett. 25, 357–358 (1989).
[Crossref]

M. Sumida, M. Koga, “Practical gain of in-line semiconductor laser amplifiers,” Electron. Lett. 25, 875–877 (1989).
[Crossref]

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser amplifier,” Electron. Lett. 24, 569–570 (1988).
[Crossref]

IEEE J. Lightwave Technol. (3)

T. Saitoh, T. Mukai, O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser diode facets,” IEEE J. Lightwave Technol. LT-3, 288–293 (1985).
[Crossref]

G. Eisenstein, L. W. Stulz, L. G. van Uitert, “Antireflection coatings on semiconductor laser facets using sputtered lead silicate glass,” IEEE J. Lightwave Technol. LT-4, 1314– 1315 (1986).

T. Saitoh, T. Mukai, “Recent progress in semiconductor laser amplifiers,” IEEE J. Lightwave Technol. 6, 1656–1664 (1988).
[Crossref]

IEEE J. Quantum Electron. (3)

T. Saitoh, T. Mukai, “1.5 μm GalnAsP traveling wave semiconductor laser amplifier,” IEEE J. Quantum Electron. QE-23, 1010–1020 (1987).
[Crossref]

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurements of the model reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[Crossref]

D. Marcuse, “Computer model of an injection laser amplifier,” IEEE J. Quantum Electron. QE-19, 63–73 (1983).
[Crossref]

Other (3)

T. Saitoh, T. Mukai, N. Y. Noguchi, “Fabrication and gain characteristics of a 1.5 μm GalnAsP traveling-wave optical amplifier,” presented at the First Optoelectronics Conference, Tokyo, 1986.

G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980), pp. 111–115.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), pp. 61–66.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of a diode with a length l and reflectivities R0 and R, respectively. The signal is collected from the facet that is to be coated and has a reflectivity of R.

Fig. 2
Fig. 2

Signal-intensity changes with coating time, where I = 25 mA. Ith = 48 mA: the solid curve is the experimental recording, and the dashed curve is the theoretical prediction.

Fig. 3
Fig. 3

Signal intensity varies with coating time, where I = 83 mA, Ith = 53 mA. The solid curve is the experimental recording, and the dashed curve is the theoretical prediction.

Fig. 4
Fig. 4

Experimental recording of dP+/dG versus t for a facet that, for some unknown reasons, could hardly be coated with the normal evaporation current of 140 A.

Fig. 5
Fig. 5

Recorded abnormal variation of the signal with the coating time. A false minimum can be seen in the diagram.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

τ g ( x , t ) / t = ( g 0 g ) g m H m [ F m + ( x , t ) + F m ( x , t ) ] ,
( 1 / u ) F m ± ( x , t ) / t + F m + / x = [ Γ H m g ( x , t ) α ] F m ± + B m ( g + b ) ,
R 0 F m ( 0 ) = F m + ( 0 ) ,
R F m + ( l ) = F m ( l ) .
F m + ( x ) = B m ( g 0 + b ) Γ H m g 0 α { 1 R 0 + R 0 Q m R R 0 Q m 1 R R 0 Q m 2 exp [ ( Γ H m g 0 α ) x ] 1 } ,
Q m = exp [ ( Γ H m g 0 α ) l ] .
P m + [ B m ( g 0 + b ) Γ H m g 0 α ] ( 1 Q m + R 0 Q m R 0 Q m 2 1 R R 0 Q m 2 ) ( 1 R m ) .
P m + [ B m ( g 0 + b ) ( 1 Q m + R 0 Q m R 0 Q m 2 ) / ( Γ H m g 0 α ) ] × ( 1 R m ) .
Z m = ( 1 R m ) / [ 1 R m ( 0 ) ] ,
Z = ( 1 R ) / [ 1 R ( 0 ) ] ,
g 0 g ( x ) = g ( x ) [ F + ( x ) + F ( x ) ] ,
d F + ( x ) / d x = [ Γ g ( x ) α ] F + ( x ) ,
R 0 F ( 0 ) = F + ( 0 ) ,
R F + ( l ) = F ( l ) ,
F + ( x ) F ( x ) = D 2 ,
α l ln ( r r 0 ) = G + 1 ( G 2 4 D 2 ) 1 / 2 × ln [ ( r + r 0 ) D + ( 1 r r 0 ) ( G 2 4 D 2 ) 1 / 2 / 2 ( 1 + r r 0 ) G / 2 ( r + r 0 ) D ( 1 r r 0 ) ( G 2 4 D 2 ) 1 / 2 / 2 ( 1 + r r 0 ) G / 2 ] ,
P + ( 1 R ) D / r .

Metrics