Abstract

To analyze the fundamental characteristics of light transmitted through living tissues, we used the Monte Carlo method to trace the paths of the rays incident upon slabs of particles. The slabs contained either (i) two types of scattering particles in a solution or (ii) one type of particle with pigment added to the solution. Temporal analyses of the transmittance have illustrated that the differences in the optical density among the slabs having different absorption coefficients with the same scattering coefficient vary linearly with time. Also, their gradients have been shown to be proportional to the differences in the absorption coefficients, thus verifying the microscopic Beer–Lambert law in highly scattering media when temporally resolved measurement is used.

© 1991 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of fan-beam-type optical computed-tomography imaging of strongly scattering and weakly absorbing media

Yukio Yamada, Yasuo Hasegawa, and Yutaka Yamashita
Appl. Opt. 32(25) 4808-4814 (1993)

Optimal probe geometry for near-infrared spectroscopy of biological tissue

G. Kumar and J. M. Schmitt
Appl. Opt. 36(10) 2286-2293 (1997)

Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique

Sergio Fantini, Maria Angela Franceschini, Joshua B. Fishkin, Beniamino Barbieri, and Enrico Gratton
Appl. Opt. 33(22) 5204-5213 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription