Abstract

The absorption, scattering, and anisotropy coefficients of the fat emulsion lntralipid-10% have been measured at 457.9, 514.5, 632.8, and 1064 nm. The size and shape distributions of the scattering particles in lntralipid-10% were determined by transmission electron microscopy. Mie theory calculations performed by using the particle size distribution yielded values for the scattering and anisotropy coefficients from 400 to 1100 nm. The agreement with experimental values is better than 6%.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. A. Marijnissen, S. A. Prahl, “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt. 28, 2292–2296 (1989).
    [CrossRef] [PubMed]
  2. W. M. Star, J. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
    [CrossRef] [PubMed]
  3. M. J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumor phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
    [CrossRef] [PubMed]
  4. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “The optical properties of Intralipid: a phantom medium for light propagation studies,” submitted to Lasers Surg. Med.
    [PubMed]
  5. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  6. W. M. Star, “Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller, D. H. Sliney, eds., Soc. Photo-Opt. Instrum. Eng. Inst. Ser.I55, 146–154 (1989).
  7. W. M. Star, J. P. A. Marijnissen, “Calculating the response of isotropic light dosimetry probes as a function of the tissue refractive index,” Appl. Opt. 28, 2288–2291 (1989).
    [CrossRef] [PubMed]
  8. J. H. M. Willison, A. J. Rowe, Practical Methods in Electron Microscopy (North-Holland, Amsterdam, 1980), Vol. 8.
  9. M. A. Williams, Quantitative Methods in Biology, A. M. Glauert, ed., Vol. 6 of Practical Methods in Electron Microscopy (North-Holland, Amsterdam, 1977).
  10. R. C. Weast, ed., Handbook of Chemistry and Physics (CRC, Boca Raton, Fla., 1978).
  11. The Merck Index (Merck, Rahway, N.J., 1976).
  12. L. Stryer, Biochemistry (Freeman, San Francisco, Calif., 1981).
  13. A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
    [CrossRef]
  14. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  15. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).
  16. G. Yoon, A. J. Welch, M. Motamedi, M. J. C. van Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721–1733 (1987).
    [CrossRef]

1989

1987

W. M. Star, J. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

G. Yoon, A. J. Welch, M. Motamedi, M. J. C. van Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721–1733 (1987).
[CrossRef]

1985

M. J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumor phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
[CrossRef] [PubMed]

1951

A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Aden, A. L.

A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Berenbaum, M. C.

M. J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumor phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
[CrossRef] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “The optical properties of Intralipid: a phantom medium for light propagation studies,” submitted to Lasers Surg. Med.
[PubMed]

Gijsbers, G. H. M.

M. J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumor phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “The optical properties of Intralipid: a phantom medium for light propagation studies,” submitted to Lasers Surg. Med.
[PubMed]

Jansen, H.

W. M. Star, J. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

Keijzer, M.

W. M. Star, J. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

Kerker, M.

A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Marijnissen, J. P. A.

Moes, C. J. M.

Motamedi, M.

G. Yoon, A. J. Welch, M. Motamedi, M. J. C. van Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721–1733 (1987).
[CrossRef]

Prahl, S. A.

Rowe, A. J.

J. H. M. Willison, A. J. Rowe, Practical Methods in Electron Microscopy (North-Holland, Amsterdam, 1980), Vol. 8.

Star, W. M.

C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. A. Marijnissen, S. A. Prahl, “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt. 28, 2292–2296 (1989).
[CrossRef] [PubMed]

W. M. Star, J. P. A. Marijnissen, “Calculating the response of isotropic light dosimetry probes as a function of the tissue refractive index,” Appl. Opt. 28, 2288–2291 (1989).
[CrossRef] [PubMed]

W. M. Star, J. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “The optical properties of Intralipid: a phantom medium for light propagation studies,” submitted to Lasers Surg. Med.
[PubMed]

W. M. Star, “Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller, D. H. Sliney, eds., Soc. Photo-Opt. Instrum. Eng. Inst. Ser.I55, 146–154 (1989).

Stryer, L.

L. Stryer, Biochemistry (Freeman, San Francisco, Calif., 1981).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

van Gemert, M. J. C.

C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. A. Marijnissen, S. A. Prahl, “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt. 28, 2292–2296 (1989).
[CrossRef] [PubMed]

W. M. Star, J. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

G. Yoon, A. J. Welch, M. Motamedi, M. J. C. van Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721–1733 (1987).
[CrossRef]

M. J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumor phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “The optical properties of Intralipid: a phantom medium for light propagation studies,” submitted to Lasers Surg. Med.
[PubMed]

Welch, A. J.

G. Yoon, A. J. Welch, M. Motamedi, M. J. C. van Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721–1733 (1987).
[CrossRef]

Williams, M. A.

M. A. Williams, Quantitative Methods in Biology, A. M. Glauert, ed., Vol. 6 of Practical Methods in Electron Microscopy (North-Holland, Amsterdam, 1977).

Willison, J. H. M.

J. H. M. Willison, A. J. Rowe, Practical Methods in Electron Microscopy (North-Holland, Amsterdam, 1980), Vol. 8.

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “The optical properties of Intralipid: a phantom medium for light propagation studies,” submitted to Lasers Surg. Med.
[PubMed]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

Yoon, G.

G. Yoon, A. J. Welch, M. Motamedi, M. J. C. van Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721–1733 (1987).
[CrossRef]

Appl. Opt.

Br. J. Cancer

M. J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumor phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

G. Yoon, A. J. Welch, M. Motamedi, M. J. C. van Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721–1733 (1987).
[CrossRef]

J. Appl. Phys.

A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Photochem. Photobiol.

W. M. Star, J. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

Other

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

J. H. M. Willison, A. J. Rowe, Practical Methods in Electron Microscopy (North-Holland, Amsterdam, 1980), Vol. 8.

M. A. Williams, Quantitative Methods in Biology, A. M. Glauert, ed., Vol. 6 of Practical Methods in Electron Microscopy (North-Holland, Amsterdam, 1977).

R. C. Weast, ed., Handbook of Chemistry and Physics (CRC, Boca Raton, Fla., 1978).

The Merck Index (Merck, Rahway, N.J., 1976).

L. Stryer, Biochemistry (Freeman, San Francisco, Calif., 1981).

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “The optical properties of Intralipid: a phantom medium for light propagation studies,” submitted to Lasers Surg. Med.
[PubMed]

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

W. M. Star, “Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller, D. H. Sliney, eds., Soc. Photo-Opt. Instrum. Eng. Inst. Ser.I55, 146–154 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for collimated transmission measurements to determine the scattering coefficient [μs(λ)] of a scattering, nonabsorbing medium.

Fig. 2
Fig. 2

Experimental setup for fluence rate measurements of an isotropic light source in an infinite medium to determine the absorption [μa(λ)] and the anisotropy [g(λ)] coefficients of the medium by using an added absorber.

Fig. 3
Fig. 3

(a) Model of an Intralipid-10% particle after sonification of a solution of soybean oil, lecithin, glycerin, and water, (b) Model of a lipid vesicle in water.12

Fig. 4
Fig. 4

Plot of data from collimated transmission measurements of diluted Intralipid-10% suspensions at the four investigated wavelengths. The slopes of the fitted lines give the extinction coefficients (μexts + μa).

Fig. 5
Fig. 5

Plot of data from the fluence rate measurements in an infinite suspension of 3% Intralipid-10% with and without added absorber at the four investigated wavelengths. The slopes of the fitted lines give the effective attenuation coefficients: (a) without added absorber, (b) with added absorber (Evans Blue).

Fig. 6
Fig. 6

Typical electron-microscope photograph from an Intralipid-10% preparation, containing the replica of fracture planes of lipid droplets from Intralipid-10%. The shaded areas are remainders of Intralipid-10% and chlorine, with which the platinum sheet was cleaned. The black spots are due to etching of the platinum by the chlorine.

Fig. 7
Fig. 7

Particle (section) size distribution of 1436 measured intralipid particles (sections) determined by transmission electron microscopy. For this sample, the mean with its standard deviation is 97(3) nm. This distribution is used with Mie theory to calculate the scattering parameters μs(λ) and g(λ) for Intralipid-10%.

Fig. 8
Fig. 8

Plot of data from the form factor calculations for the 1436 measured intralipid particles (sections). The closer the form factor (PE) is to 1, the closer the particles are to a spherical shape (for any nonspherical shape PE < 1). The horizontal line (PE = 0.97) implies, in case of ellipses, an axis ratio of 0.8 and marks the lower boundary to where the accuracy of the Mie scattering calculations is not significantly influenced.14 The vertical lines mark the Ray-leigh scattering boundaries for the 400-nm (d = 40 nm) and 1100-nm (d = 120 nm) wavelengths.

Fig. 9
Fig. 9

Calculated scattering coefficient curve (solid line) compared with experimental values (crosses) of Intralipid-10%.

Fig. 10
Fig. 10

Calculated anisotropy coefficient (solid line) compared with experimental values (crosses, P3 approximation) of Intralipid-10%.

Tables (1)

Tables Icon

Table I Survey of Experimental and Mie Theory Values of the Scattering [μs(λ)] Anisotropy [g(λ)], and Absorption [μa(λ)] Coefficients for Intralipid-10% Compared with Experimental Values of Other Investigations

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E c = E w exp [ ( μ a + μ s ) cd ] ,
Ψ ( r ) = B r exp ( μ eff r ) ,
B = 3 P 0 [ μ a + μ s ( 1 g ) ] 16 π 2 ,
μ eff 0 2 = 3 μ a IL [ μ a IL + ( μ ext μ a IL ) ( 1 g ) ] , μ eff 2 = 3 ( μ a IL + μ a EB ) [ μ a IL + μ a EB + ( μ ext μ a IL ) ( 1 g ) ] .
μ eff 2 = { 9 γ 0 γ 1 + 4 γ 0 γ 3 + γ 2 γ 3 [ ( 9 γ 0 γ 1 + 4 γ 0 γ 3 + γ 2 γ 3 ) 2 36 γ 0 γ 1 γ 2 γ 3 ] 1 / 2 } / 18 ,
γ n = ( 2 n + 1 ) [ μ a + μ s ( 1 g n ) ] , n = 0 , 1 , 2 , 3 ,
P E = 4 π A s 2 .
x = 2 π r n ext λ vac , m = n sph n ext ,
n ( λ ) = I + J / λ 2 + K / λ 4 ,
σ sca ( r , λ ) = π r 2 Q sca ( r , λ ) ,
μ s ( λ ) = N 0 i = 1 n σ sca ( r i , λ ) f ( r i ) ,
g ( λ ) = i = 1 n g ( r i , λ ) σ sca ( r i , λ ) f ( r i ) i = 1 n σ sca ( r i , λ ) f ( r i ) ,
i = 1 n f ( r i ) = 1
N 0 = υ i = 1 n 4 3 π r i 3 f ( r i ) ,
μ s ( λ ) = 0.016 λ 2.4 ( ± 6 % ) ,
g ( λ ) = 1.1 0.58 λ ( ± 5 % ) ,
μ s ( λ ) = 0.016 λ 2.4 , g ( λ ) = 1.1 0.58 λ

Metrics