Abstract

A method using the magnification of the Talbot image and the moiré technique to measure the focal length of a collimating lens is described.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Kafri. “Noncoherent method for mapping phase objects,” Opt. Lett. 5, 555–557 (1980).
    [CrossRef] [PubMed]
  2. Z. Karny, O. Kafri, “Refractive index measurements by moire deflectometry,” Appl. Opt. 21, 3326–3328 (1982).
    [CrossRef] [PubMed]
  3. Y. Nakano, K. Murata, “Measurement of phase objects using the Talbot effect and moire techniques,” Appl. Opt. 23, 2296–2299 (1984).
    [CrossRef] [PubMed]
  4. Y. Nakano, K. Murata, “Talbot interferometry for measuring the focal length of a lens,” Appl. Opt. 24, 3162–3166 (1985).
    [CrossRef] [PubMed]
  5. I. Glatt, O. Kafri, “Determination of the focal length of nonparaxial lenses by moire deflectometry,” Appl. Opt. 26, 2507–2508 (1987).
    [CrossRef] [PubMed]
  6. E. Keren, K. M. Kreske, O. Kafri, “Universal method for determining the focal length of optical systems by moire deflectometry,” Appl. Opt. 27, 1383–1385 (1988).
    [CrossRef] [PubMed]
  7. L. M. Bernardo, O. D. D. Soares, “Evaluation of the focal distance of a lens by Talbot interferometry,” Appl. Opt. 27, 296–301 (1988).
    [CrossRef] [PubMed]
  8. J. C. Bhattacharya, “Measurement of the refractive index using the Talbot effect and a moire technique.” Appl. Opt. 28, 2600–2604 (1989).
    [CrossRef] [PubMed]
  9. G. L. Rogers, “A simple method of analysing moire fringes,” Proc. Phys. Soc. (London) 73, 142–144 (1959).
    [CrossRef]
  10. M. V. R. K. Murty, “The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source,” Appl. Opt. 3, 531–534 (1964).
    [CrossRef]
  11. D. E. Silva, “A simple interferometric method of beam collimation,” Appl. Opt. 10, 1980–1982 (1971).
    [CrossRef]

1989 (1)

1988 (2)

1987 (1)

1985 (1)

1984 (1)

1982 (1)

1980 (1)

1971 (1)

1964 (1)

1959 (1)

G. L. Rogers, “A simple method of analysing moire fringes,” Proc. Phys. Soc. (London) 73, 142–144 (1959).
[CrossRef]

Bernardo, L. M.

Bhattacharya, J. C.

Glatt, I.

Kafri, O.

Karny, Z.

Keren, E.

Kreske, K. M.

Murata, K.

Murty, M. V. R. K.

Nakano, Y.

Rogers, G. L.

G. L. Rogers, “A simple method of analysing moire fringes,” Proc. Phys. Soc. (London) 73, 142–144 (1959).
[CrossRef]

Silva, D. E.

Soares, O. D. D.

Appl. Opt. (9)

Opt. Lett. (1)

Proc. Phys. Soc. (London) (1)

G. L. Rogers, “A simple method of analysing moire fringes,” Proc. Phys. Soc. (London) 73, 142–144 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Talbot interferometer setup to observe fringes due to defocusing of the collimating lens (z0f). Fringes are observed on G2.

Fig. 2
Fig. 2

Moiré fringe pattern observed through the test lens: (a) ϕ1 = 32.5°, (b) ϕ2 = 50.0°, f= 200 mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M = 1 + Z J / Z W ,
| 1 / Z w | = | f Z 0 | Z G | f Z 0 | + Z 0 f ,
M = cot θ / 2 + tan ϕ cot θ / 2 tan ϕ .
Z G x + f ( f x ) = ( x Z j 2 ) ( cot θ / 2 tan ϕ tan ϕ ) .
f = [ Z J 2 ( 1 x 1 1 x 2 ) 1 ( 1 tan ϕ 1 1 tan ϕ 2 ) cot θ / 2 ] 1 / 2 .

Metrics