Abstract

A method using the magnification of the Talbot image and the moiré technique to measure the focal length of a collimating lens is described.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Kafri. “Noncoherent method for mapping phase objects,” Opt. Lett. 5, 555–557 (1980).
    [CrossRef] [PubMed]
  2. Z. Karny, O. Kafri, “Refractive index measurements by moire deflectometry,” Appl. Opt. 21, 3326–3328 (1982).
    [CrossRef] [PubMed]
  3. Y. Nakano, K. Murata, “Measurement of phase objects using the Talbot effect and moire techniques,” Appl. Opt. 23, 2296–2299 (1984).
    [CrossRef] [PubMed]
  4. Y. Nakano, K. Murata, “Talbot interferometry for measuring the focal length of a lens,” Appl. Opt. 24, 3162–3166 (1985).
    [CrossRef] [PubMed]
  5. I. Glatt, O. Kafri, “Determination of the focal length of nonparaxial lenses by moire deflectometry,” Appl. Opt. 26, 2507–2508 (1987).
    [CrossRef] [PubMed]
  6. E. Keren, K. M. Kreske, O. Kafri, “Universal method for determining the focal length of optical systems by moire deflectometry,” Appl. Opt. 27, 1383–1385 (1988).
    [CrossRef] [PubMed]
  7. L. M. Bernardo, O. D. D. Soares, “Evaluation of the focal distance of a lens by Talbot interferometry,” Appl. Opt. 27, 296–301 (1988).
    [CrossRef] [PubMed]
  8. J. C. Bhattacharya, “Measurement of the refractive index using the Talbot effect and a moire technique.” Appl. Opt. 28, 2600–2604 (1989).
    [CrossRef] [PubMed]
  9. G. L. Rogers, “A simple method of analysing moire fringes,” Proc. Phys. Soc. (London) 73, 142–144 (1959).
    [CrossRef]
  10. M. V. R. K. Murty, “The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source,” Appl. Opt. 3, 531–534 (1964).
    [CrossRef]
  11. D. E. Silva, “A simple interferometric method of beam collimation,” Appl. Opt. 10, 1980–1982 (1971).
    [CrossRef]

1989

1988

1987

1985

1984

1982

1980

1971

1964

1959

G. L. Rogers, “A simple method of analysing moire fringes,” Proc. Phys. Soc. (London) 73, 142–144 (1959).
[CrossRef]

Bernardo, L. M.

Bhattacharya, J. C.

Glatt, I.

Kafri, O.

Karny, Z.

Keren, E.

Kreske, K. M.

Murata, K.

Murty, M. V. R. K.

Nakano, Y.

Rogers, G. L.

G. L. Rogers, “A simple method of analysing moire fringes,” Proc. Phys. Soc. (London) 73, 142–144 (1959).
[CrossRef]

Silva, D. E.

Soares, O. D. D.

Appl. Opt.

Opt. Lett.

Proc. Phys. Soc. (London)

G. L. Rogers, “A simple method of analysing moire fringes,” Proc. Phys. Soc. (London) 73, 142–144 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Talbot interferometer setup to observe fringes due to defocusing of the collimating lens (z0f). Fringes are observed on G2.

Fig. 2
Fig. 2

Moiré fringe pattern observed through the test lens: (a) ϕ1 = 32.5°, (b) ϕ2 = 50.0°, f= 200 mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M = 1 + Z J / Z W ,
| 1 / Z w | = | f Z 0 | Z G | f Z 0 | + Z 0 f ,
M = cot θ / 2 + tan ϕ cot θ / 2 tan ϕ .
Z G x + f ( f x ) = ( x Z j 2 ) ( cot θ / 2 tan ϕ tan ϕ ) .
f = [ Z J 2 ( 1 x 1 1 x 2 ) 1 ( 1 tan ϕ 1 1 tan ϕ 2 ) cot θ / 2 ] 1 / 2 .

Metrics