Abstract

The fiber specklegram is highly sensitive to the relative modal phases and is of multiplexing capability. Its properties are analyzed and experimentally demonstrated.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, J. Dakin, Optical Fiber Sensor: Systems and Applications (Artech House, Redham, Mass., 1989).
  2. N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–mode interference effects in axially stained few-mode optical fibers,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds, Proc. Soc. Photo-Opt. Instrum. Eng.838, 385–388 (1987).
  3. H. F. Taylor, “Bending effects in optical fibers,” IEEE J. Lightwave Technol. LT-2, 617–628 (1984).
    [CrossRef]

1984

H. F. Taylor, “Bending effects in optical fibers,” IEEE J. Lightwave Technol. LT-2, 617–628 (1984).
[CrossRef]

Claus, R. O.

N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–mode interference effects in axially stained few-mode optical fibers,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds, Proc. Soc. Photo-Opt. Instrum. Eng.838, 385–388 (1987).

Culshaw, B.

B. Culshaw, J. Dakin, Optical Fiber Sensor: Systems and Applications (Artech House, Redham, Mass., 1989).

Dakin, J.

B. Culshaw, J. Dakin, Optical Fiber Sensor: Systems and Applications (Artech House, Redham, Mass., 1989).

Shankaranarayanan, N. K.

N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–mode interference effects in axially stained few-mode optical fibers,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds, Proc. Soc. Photo-Opt. Instrum. Eng.838, 385–388 (1987).

Srinivas, K. T.

N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–mode interference effects in axially stained few-mode optical fibers,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds, Proc. Soc. Photo-Opt. Instrum. Eng.838, 385–388 (1987).

Taylor, H. F.

H. F. Taylor, “Bending effects in optical fibers,” IEEE J. Lightwave Technol. LT-2, 617–628 (1984).
[CrossRef]

IEEE J. Lightwave Technol.

H. F. Taylor, “Bending effects in optical fibers,” IEEE J. Lightwave Technol. LT-2, 617–628 (1984).
[CrossRef]

Other

B. Culshaw, J. Dakin, Optical Fiber Sensor: Systems and Applications (Artech House, Redham, Mass., 1989).

N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–mode interference effects in axially stained few-mode optical fibers,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds, Proc. Soc. Photo-Opt. Instrum. Eng.838, 385–388 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Formation of the fiber speckle hologram.

Fig. 2
Fig. 2

(a) Coherent term of the reconstruction; (b) incoherent term of the reconstruction.

Fig. 3
Fig. 3

Reconstructed peak value of the coherent term as a function of δ.

Fig. 4
Fig. 4

Reconstructions of the fiber speckle hologram on the focal plane: (a) with an unchanged fiber status; (b) with a changed fiber status.

Fig. 5
Fig. 5

Angular multiplexing reconstructions of the fiber speckle holograms: (a) with pressure on the microbending device; (b) without pressure on the microbending device.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ( α ) = tri 2 ( R d F α ) { M 2 sinc 2 ( R d F M α ) + n = 1 M 1 ( 2 M 2 n + 1 ) sinc 2 [ n ( 1 R d F | α | ) ] } ,
S ( α ) = tri 2 ( R d F α ) × ( | m = M M 1 exp { j [ π R d F ( 2 m + 1 ) α + Δ Ψ m ] } | 2 + n = 1 M 1 ( 2 M 2 n + 1 ) sinc 2 [ n ( 1 R d F | α | ) ] ) ,
S 0 ( 0 ) = M 2 ( 1 σ 2 ) ,
σ 2 = 1 M m = 0 M 1 Δ Ψ m 2 .

Metrics