Abstract

We analyze an acousto-optic crossbar switch architecture that can be used to implement an N × N point-to-point switch with just N hardware complexity. In our analysis, we determine that insertion loss and cross talk are minimized if we place the output ports in the diffraction far field of the acousto-optic cell. Using this result, we develop an optimum switch design based on Fourier optics: a Fourier transform lens is used both to scale the output beams for efficient coupling to the output ports and to provide a necessary optical fan-in from input to output ports. We demonstrate the performance of switch configurations using single-mode fiber input ports in conjunction with single-mode fiber, multimode fiber, and photodiode output ports.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. VanderLugt, “Fresnel transforms and optical computing,” in Optical and Hybrid Computing, H. H. Szu, ed., Proc. Soc. Photo-Opt. Instrum. Eng.634, 51–56 (1986).
    [Crossref]
  2. A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
    [Crossref]
  3. D. O. Harris, A. VanderLugt, “Acousto-optic photonic switch,” Opt. Lett. 14, 1177–1179 (1989).
    [Crossref] [PubMed]
  4. M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber-optic matrix switchboard using acousto optic Bragg cells,” in Components for Fiber Applications III and Coherent Lightwave Communications, P. M. Kopera, H. R. Sunak, eds., Proc. Soc. Photo-Opt. Instrum. Eng.988, 56–62 (1988).
  5. W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
    [Crossref]
  6. V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).
  7. D. O. Harris, “Acousto-optic photonic switching,” Ph.D. dissertation, North Carolina State University. (University Microfilms, Ann Arbor, Mich., 1990).
  8. A. Korpel, “Acousto-optics—a review of the fundamentals,” Proc. IEEE 69, 48–53 (1981).
    [Crossref]
  9. J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
    [Crossref]
  10. W. T. Maloney, G. Meltz, R. L. Gravel, “Optical probing of the Fresnel and Fraunhofer regions of a rectangular acoustic transducer,” IEEE Trans. Sonics Ultrason. SU-15, 167–172 (1968).
    [Crossref]
  11. W. R. Beaudet, M. Popek, D. R. Pape, “Advances in multi-channel Bragg cell technology,” in Advances in Optical Information Processing II; D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.639, 28–33 (1986).
  12. M. Amano, E. Roos, “32 channel acousto-optic Bragg cell for optical computing,” in Acousto-Optic, Electro-Optic, and Magneto-Optic Devices and Applications, J. A. Lucero, ed., Proc. Soc. Photo-Opt. Instrum. Eng.753, 37–42 (1987).
  13. D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason SU-24, 7–18 (1977).
    [Crossref]
  14. P. J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1972).
  15. A. VanderLugt, “Fresnel transforms and Bragg cell processors,” Appl. Opt. 24, 3846–3859 (1985).
    [Crossref] [PubMed]
  16. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  17. E. Hecht, A. Zajac, Optics (Addison-Wesley, Menlo Park, Calif., 1979).
  18. A. VanderLugt, “Bragg cell diffraction patterns,” Appl. Opt. 21, 1092–1100 (1982).
    [Crossref] [PubMed]
  19. C. M. Miller, S. C. Mettler, I. A. White, Optical Fiber Splices and Connectors (Marcel Dekker, New York, 1986).
  20. E.g., Corning, Inc., product information sheet for PI-108 SMF single-mode fiber.
  21. S.-C. Lin, “Crosstalk characteristics of multichannel acousto-optic Bragg cells,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.936, 76–84 (1988).
  22. I. C. Chang, “Acousto-optic devices: material issues,” in Spatial Light Modulators, and Applications I, U. Efron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.465, 55–65 (1984).

1990 (1)

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[Crossref]

1989 (1)

1987 (1)

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[Crossref]

1985 (2)

J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
[Crossref]

A. VanderLugt, “Fresnel transforms and Bragg cell processors,” Appl. Opt. 24, 3846–3859 (1985).
[Crossref] [PubMed]

1982 (1)

1981 (1)

A. Korpel, “Acousto-optics—a review of the fundamentals,” Proc. IEEE 69, 48–53 (1981).
[Crossref]

1977 (1)

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason SU-24, 7–18 (1977).
[Crossref]

1968 (1)

W. T. Maloney, G. Meltz, R. L. Gravel, “Optical probing of the Fresnel and Fraunhofer regions of a rectangular acoustic transducer,” IEEE Trans. Sonics Ultrason. SU-15, 167–172 (1968).
[Crossref]

Amano, M.

M. Amano, E. Roos, “32 channel acousto-optic Bragg cell for optical computing,” in Acousto-Optic, Electro-Optic, and Magneto-Optic Devices and Applications, J. A. Lucero, ed., Proc. Soc. Photo-Opt. Instrum. Eng.753, 37–42 (1987).

Banwell, T. C.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[Crossref]

Beaudet, W. R.

W. R. Beaudet, M. Popek, D. R. Pape, “Advances in multi-channel Bragg cell technology,” in Advances in Optical Information Processing II; D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.639, 28–33 (1986).

Benes, V. E.

V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).

Chang, I. C.

I. C. Chang, “Acousto-optic devices: material issues,” in Spatial Light Modulators, and Applications I, U. Efron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.465, 55–65 (1984).

Cheng, S. S.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[Crossref]

Davis, P. J.

P. J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1972).

Dropps, F. R.

M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber-optic matrix switchboard using acousto optic Bragg cells,” in Components for Fiber Applications III and Coherent Lightwave Communications, P. M. Kopera, H. R. Sunak, eds., Proc. Soc. Photo-Opt. Instrum. Eng.988, 56–62 (1988).

Fleming, D. L.

M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber-optic matrix switchboard using acousto optic Bragg cells,” in Components for Fiber Applications III and Coherent Lightwave Communications, P. M. Kopera, H. R. Sunak, eds., Proc. Soc. Photo-Opt. Instrum. Eng.988, 56–62 (1988).

Goodman, J. W.

J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
[Crossref]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

Gravel, R. L.

W. T. Maloney, G. Meltz, R. L. Gravel, “Optical probing of the Fresnel and Fraunhofer regions of a rectangular acoustic transducer,” IEEE Trans. Sonics Ultrason. SU-15, 167–172 (1968).
[Crossref]

Harris, D. O.

D. O. Harris, A. VanderLugt, “Acousto-optic photonic switch,” Opt. Lett. 14, 1177–1179 (1989).
[Crossref] [PubMed]

D. O. Harris, “Acousto-optic photonic switching,” Ph.D. dissertation, North Carolina State University. (University Microfilms, Ann Arbor, Mich., 1990).

Hecht, D. L.

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason SU-24, 7–18 (1977).
[Crossref]

Hecht, E.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Menlo Park, Calif., 1979).

Huang, P. C.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[Crossref]

Jenkins, B. K.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[Crossref]

Korpel, A.

A. Korpel, “Acousto-optics—a review of the fundamentals,” Proc. IEEE 69, 48–53 (1981).
[Crossref]

Lin, S.-C.

S.-C. Lin, “Crosstalk characteristics of multichannel acousto-optic Bragg cells,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.936, 76–84 (1988).

Maloney, W. T.

W. T. Maloney, G. Meltz, R. L. Gravel, “Optical probing of the Fresnel and Fraunhofer regions of a rectangular acoustic transducer,” IEEE Trans. Sonics Ultrason. SU-15, 167–172 (1968).
[Crossref]

Meltz, G.

W. T. Maloney, G. Meltz, R. L. Gravel, “Optical probing of the Fresnel and Fraunhofer regions of a rectangular acoustic transducer,” IEEE Trans. Sonics Ultrason. SU-15, 167–172 (1968).
[Crossref]

Mettler, S. C.

C. M. Miller, S. C. Mettler, I. A. White, Optical Fiber Splices and Connectors (Marcel Dekker, New York, 1986).

Miller, C. M.

C. M. Miller, S. C. Mettler, I. A. White, Optical Fiber Splices and Connectors (Marcel Dekker, New York, 1986).

Pape, D. R.

W. R. Beaudet, M. Popek, D. R. Pape, “Advances in multi-channel Bragg cell technology,” in Advances in Optical Information Processing II; D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.639, 28–33 (1986).

Popek, M.

W. R. Beaudet, M. Popek, D. R. Pape, “Advances in multi-channel Bragg cell technology,” in Advances in Optical Information Processing II; D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.639, 28–33 (1986).

Rabinowitz, P.

P. J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1972).

Raghavendra, C. S.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[Crossref]

Reith, L. A.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[Crossref]

Roos, E.

M. Amano, E. Roos, “32 channel acousto-optic Bragg cell for optical computing,” in Acousto-Optic, Electro-Optic, and Magneto-Optic Devices and Applications, J. A. Lucero, ed., Proc. Soc. Photo-Opt. Instrum. Eng.753, 37–42 (1987).

Sawchuk, A. A.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[Crossref]

Stephens, W. E.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[Crossref]

VanderLugt, A.

Varma, A.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[Crossref]

White, I. A.

C. M. Miller, S. C. Mettler, I. A. White, Optical Fiber Splices and Connectors (Marcel Dekker, New York, 1986).

Wilson, M. L.

M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber-optic matrix switchboard using acousto optic Bragg cells,” in Components for Fiber Applications III and Coherent Lightwave Communications, P. M. Kopera, H. R. Sunak, eds., Proc. Soc. Photo-Opt. Instrum. Eng.988, 56–62 (1988).

Zajac, A.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Menlo Park, Calif., 1979).

Appl. Opt. (2)

Computer (1)

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[Crossref]

IEEE Trans. Sonics Ultrason (1)

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason SU-24, 7–18 (1977).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

W. T. Maloney, G. Meltz, R. L. Gravel, “Optical probing of the Fresnel and Fraunhofer regions of a rectangular acoustic transducer,” IEEE Trans. Sonics Ultrason. SU-15, 167–172 (1968).
[Crossref]

Opt. Acta (1)

J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
[Crossref]

Opt. Eng. (1)

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[Crossref]

Opt. Lett. (1)

Proc. IEEE (1)

A. Korpel, “Acousto-optics—a review of the fundamentals,” Proc. IEEE 69, 48–53 (1981).
[Crossref]

Other (13)

A. VanderLugt, “Fresnel transforms and optical computing,” in Optical and Hybrid Computing, H. H. Szu, ed., Proc. Soc. Photo-Opt. Instrum. Eng.634, 51–56 (1986).
[Crossref]

W. R. Beaudet, M. Popek, D. R. Pape, “Advances in multi-channel Bragg cell technology,” in Advances in Optical Information Processing II; D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.639, 28–33 (1986).

M. Amano, E. Roos, “32 channel acousto-optic Bragg cell for optical computing,” in Acousto-Optic, Electro-Optic, and Magneto-Optic Devices and Applications, J. A. Lucero, ed., Proc. Soc. Photo-Opt. Instrum. Eng.753, 37–42 (1987).

M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber-optic matrix switchboard using acousto optic Bragg cells,” in Components for Fiber Applications III and Coherent Lightwave Communications, P. M. Kopera, H. R. Sunak, eds., Proc. Soc. Photo-Opt. Instrum. Eng.988, 56–62 (1988).

V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).

D. O. Harris, “Acousto-optic photonic switching,” Ph.D. dissertation, North Carolina State University. (University Microfilms, Ann Arbor, Mich., 1990).

P. J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1972).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

E. Hecht, A. Zajac, Optics (Addison-Wesley, Menlo Park, Calif., 1979).

C. M. Miller, S. C. Mettler, I. A. White, Optical Fiber Splices and Connectors (Marcel Dekker, New York, 1986).

E.g., Corning, Inc., product information sheet for PI-108 SMF single-mode fiber.

S.-C. Lin, “Crosstalk characteristics of multichannel acousto-optic Bragg cells,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.936, 76–84 (1988).

I. C. Chang, “Acousto-optic devices: material issues,” in Spatial Light Modulators, and Applications I, U. Efron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.465, 55–65 (1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Basic configuration of an acousto-optic photonic switch.

Fig. 2
Fig. 2

Limited deflection range of an acousto-optic cell and containment of the output ports within it.

Fig. 3
Fig. 3

Plots of calculated (a) coupling efficiency and (b) SCR o versus the normalized port width for various values of the normalized propagation distance. In these plots, the normalized port separation sn = 2.

Fig. 4
Fig. 4

Plots of calculated (a) coupling efficiency and (b) SCR o versus the normalized port width for various values of aperture weighting parameter A. In these plots, the normalized port separation sn = 2.

Fig. 5
Fig. 5

Top view of a Fourier domain acousto-optic switch.

Fig. 6
Fig. 6

General form of the optical system used in a Fourier domain acousto-optic switch. Note that only one input port is shown in the side view. This is done only to avoid clutter in the diagram. The remaining input ports are implied.

Fig. 7
Fig. 7

Measured average output signal and cross-talk levels relative to the input signal for 4 × 4 single-mode fiber to the single-mode fiber switch.

Fig. 8
Fig. 8

Measured output signal and cross-talk levels relative to the input signal for a representative interconnection permutation of an 8 × 8 single-mode fiber to single-mode fiber switch.

Fig. 9
Fig. 9

Measured average output signal and cross-talk levels relative to the input signal for the 4 × 4 single-mode fiber to multimode fiber switch.

Fig. 10
Fig. 10

Measured average output signal and cross-talk levels relative to the input signal for the 4 × 4 single-mode fiber to photodiode array switch.

Tables (3)

Tables Icon

Table I Calculated Signal-to-Cross-Talk Ratios (in decibels) for Various Numbers of Output Ports and Normalized Values of Port Width and Separation

Tables Icon

Table II Measured Insertion Loss (in decibels) for a 4 × 4 Single-Mode Switching Element

Tables Icon

Table III Measured Insertion Loss for Multimode Output Port Configuration (decibels)

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

SCR = P i i k i P i k ,
SCR = ( 1 SCR o + 1 SCR a + 1 SCR e ) 1 ,
a ( x ) = rect [ x L ] exp [ 2 A ( x L ) 2 ] ,
N = TW w n s n | SCR o ,
SCR o P i i P i , i 1 + P i , i + 1
Δ ξ = λ W F 2 υ ,
F 2 = υ ( N 1 ) s λ W .
F 1 = L 4 sin ϑ .
N = TW λ M ξ 4 s sin ϑ + 1 .
4 s sin ϑ λ M ξ = s ξ 0 w n s n ,
F 3 F 2 = L 2 H ,
F 4 = F 3 F 2 F 1 M ξ ,
F 5 = F 1 M ζ ,
sin θ max = sin ϑ ( N 1 ) γ M ζ ,
ρ f 2 M ζ exp [ ( w 0 2 k 0 2 sin 2 θ 2 ) ]
ρ f | θ max 2 M ζ exp [ ( w 0 2 k 0 2 NA 2 γ 2 N 2 2 M ζ 2 ) ] .
M ζ = w 0 k 0 NA γ N .
η sin 2 ( π α P a 1 / 2 λ ) ,

Metrics