Abstract

A novel polarization-encoded two-channel joint transform correlator is described that can produce unity interference modulation, independent of the illumination of the target and the reference.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. T. S. Yu, S. Jutamulia, W. T. Lin, D. A. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987).
    [CrossRef] [PubMed]
  2. D. A. Gregory, J. A. Loudin, F. T. S. Yu, “Illumination dependence of the joint transform correlation,” Appl. Opt. 28, 3288–3290 (1989).
    [CrossRef] [PubMed]
  3. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  4. See, for example, M. V. Klein, Optics (Wiley, New York, 1970), pp. 186–187.
  5. S. H. Lee, “Coherent optical processing,” in Optical Information Processing, S. H. Lee, ed. (Springer-Verlag, New York, 1981), p. 58.
  6. H. H. Bossel, W. J. Hiller, G. E. A. Meier, “Noise-cancelling signal difference method for optical velocity measurements,” J. Phys. E 5, 893–896 (1972).
    [CrossRef]
  7. D. Psaltis, E. G. Paek, S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698–704 (1984).
    [CrossRef]

1989 (1)

1987 (1)

1984 (1)

D. Psaltis, E. G. Paek, S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698–704 (1984).
[CrossRef]

1972 (1)

H. H. Bossel, W. J. Hiller, G. E. A. Meier, “Noise-cancelling signal difference method for optical velocity measurements,” J. Phys. E 5, 893–896 (1972).
[CrossRef]

1966 (1)

Bossel, H. H.

H. H. Bossel, W. J. Hiller, G. E. A. Meier, “Noise-cancelling signal difference method for optical velocity measurements,” J. Phys. E 5, 893–896 (1972).
[CrossRef]

Goodman, J. W.

Gregory, D. A.

Hiller, W. J.

H. H. Bossel, W. J. Hiller, G. E. A. Meier, “Noise-cancelling signal difference method for optical velocity measurements,” J. Phys. E 5, 893–896 (1972).
[CrossRef]

Jutamulia, S.

Klein, M. V.

See, for example, M. V. Klein, Optics (Wiley, New York, 1970), pp. 186–187.

Lee, S. H.

S. H. Lee, “Coherent optical processing,” in Optical Information Processing, S. H. Lee, ed. (Springer-Verlag, New York, 1981), p. 58.

Lin, W. T.

Loudin, J. A.

Meier, G. E. A.

H. H. Bossel, W. J. Hiller, G. E. A. Meier, “Noise-cancelling signal difference method for optical velocity measurements,” J. Phys. E 5, 893–896 (1972).
[CrossRef]

Paek, E. G.

D. Psaltis, E. G. Paek, S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698–704 (1984).
[CrossRef]

Psaltis, D.

D. Psaltis, E. G. Paek, S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698–704 (1984).
[CrossRef]

Venkatesh, S. S.

D. Psaltis, E. G. Paek, S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698–704 (1984).
[CrossRef]

Weaver, C. S.

Yu, F. T. S.

Appl. Opt. (3)

J. Phys. E (1)

H. H. Bossel, W. J. Hiller, G. E. A. Meier, “Noise-cancelling signal difference method for optical velocity measurements,” J. Phys. E 5, 893–896 (1972).
[CrossRef]

Opt. Eng. (1)

D. Psaltis, E. G. Paek, S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698–704 (1984).
[CrossRef]

Other (2)

See, for example, M. V. Klein, Optics (Wiley, New York, 1970), pp. 186–187.

S. H. Lee, “Coherent optical processing,” in Optical Information Processing, S. H. Lee, ed. (Springer-Verlag, New York, 1981), p. 58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Optical architecture for the polarization-encoded two-channel differential JTC.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I 1 + I 2 + 2 ( I 1 I 2 ) 1 / 2 cos Ψ ( x ) ,
I max = 4 I 0 when Ψ ( x ) = 0 ,
I min = 0 when Ψ ( x ) = π ,
M = ( I max I min ) / ( I max + I min ) = 1 .
I max = I 1 + I 2 + 2 ( I 1 I 2 ) 1 / 2 ,
I min = I 1 + I 2 2 ( I 1 I 2 ) 1 / 2 ,
M = [ 2 ( I 1 / I 2 ) 1 / 2 ] / [ ( I 1 / I 2 ) + 1 ] .
I ( 1 ) ( x , y ) = I 1 + I 2 + 2 ( I 1 I 2 ) 1 / 2 cos Ψ ( 1 ) ( x ) ,
I ( 2 ) ( x , y ) = I 1 + I 2 + 2 ( I 1 I 2 ) 1 / 2 cos Ψ ( 2 ) ( x ) ,
Ψ ( 2 ) ( x ) = Ψ ( 1 ) ( x ) + π ,
Δ I ( x , y ) = 4 ( I 1 I 2 ) 1 / 2 cos Ψ ( 1 ) ( x ) .
Δ I max = 4 ( I 1 I 2 ) 1 / 2 ,
Δ I min = 4 ( I 1 I 2 ) 1 / 2 .
I ( x , y ) = Δ I ( x , y ) + Δ I max = 4 ( I 1 I 2 ) 1 / 2 cos Ψ ( 1 ) ( x ) + 4 ( I 1 I 2 ) 1 / 2 ,
M = 1 .
begin for j 1 to N do for i 1 to N do Δ I i j I i j ( 1 ) I i j ( 2 ) if Δ I i j 0 then ϕ i j 0 else ϕ i j π endif endfor endfor end ,
begin Δ I max 0 for j 1 to N do for i 1 to N do Δ I i j I i j ( 1 ) I i j ( 2 ) if Δ I max Δ I i j then Δ I max Δ I max else Δ I max Δ I i j endif endfor endfor for j 1 to N do for i 1 to N do I i j Δ I i j + Δ I max endfor endfor end .

Metrics