Abstract

We describe a two-wavelength laser-diode interferometer that is insensitive to external disturbances such as fluctuations in the wavelength of the laser diode and mechanical vibrations of the optical components. In sinusoidal phase-modulating interferometry this insensitivity is easily obtained by controlling the injection current of the laser diode with a feedback control system. Using an equivalent wavelength of 152 μm provided by two single-frequency laser diodes, we can measure the distance, rotation angle, and surface profile measurements with great accuracy.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Wyant, “Testing aspherics using two-wavelength holography,” Appl. Opt. 10, 2113–2118 (1971).
    [CrossRef] [PubMed]
  2. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071–2074 (1973).
    [CrossRef] [PubMed]
  3. C. C. Williams, H. K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
    [CrossRef]
  4. A. J. den Boef, “Two-wavelength scanning spot interferometer using single-frequency diode lasers,” Appl. Opt. 27, 306–311 (1988).
    [CrossRef]
  5. O. Sasaki, H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt. 25, 3137–3140 (1986).
    [CrossRef] [PubMed]
  6. O. Sasaki, H. Okazaki, “Analysis of measurement accuracy in sinusoidal phase modulating interferometry,” Appl. Opt. 25, 3152–3158 (1986).
    [CrossRef] [PubMed]
  7. O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with feedback control system to eliminate external disturbance,” in Fringe Pattern Analysis, G. T. Reid, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1163, 14–21 (1989).

1988 (1)

1986 (3)

1973 (1)

1971 (1)

den Boef, A. J.

Okazaki, H.

Polhemus, C.

Sasaki, O.

O. Sasaki, H. Okazaki, “Analysis of measurement accuracy in sinusoidal phase modulating interferometry,” Appl. Opt. 25, 3152–3158 (1986).
[CrossRef] [PubMed]

O. Sasaki, H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt. 25, 3137–3140 (1986).
[CrossRef] [PubMed]

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with feedback control system to eliminate external disturbance,” in Fringe Pattern Analysis, G. T. Reid, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1163, 14–21 (1989).

Suzuki, T.

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with feedback control system to eliminate external disturbance,” in Fringe Pattern Analysis, G. T. Reid, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1163, 14–21 (1989).

Takahashi, K.

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with feedback control system to eliminate external disturbance,” in Fringe Pattern Analysis, G. T. Reid, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1163, 14–21 (1989).

Wickramasinghe, H. K.

C. C. Williams, H. K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Williams, C. C.

C. C. Williams, H. K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Wyant, J. C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Setup of the feedback control of an injection current in a laser-diode interferometer.

Fig. 2
Fig. 2

SPM laser-diode interferometer with a feedback control system to eliminate external disturbances.

Fig. 3
Fig. 3

Two-wavelength SPM laser-diode interferometer with a feedback control system to eliminate external disturbances.

Fig. 4
Fig. 4

Effects of eliminating external disturbances: (a) feedback control not working; (b) feedback control working well.

Fig. 5
Fig. 5

Measurement results of the moving distances of an aluminum plate.

Fig. 6
Fig. 6

Optical system used to create an image of an object in a rotation angle and surface profile measurements.

Fig. 7
Fig. 7

Measurement results of the rotation angles of the mirror.

Fig. 8
Fig. 8

Measurement results of the surface profile of an aluminum plate.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

Δ λ ( t ) = β Δ i m ( t ) ,
λ ( t ) = λ 0 + Δ λ ( t ) .
A ( t ) = exp { j 2 π c 0 t [ 1 / λ ( t ) ] d t } = exp [ j ϕ ( t ) ] ,
S ( t ) = cos [ ϕ ( t τ o ) ϕ ( t τ r ) ] = cos Φ ( t ) ,
1 / λ ( t ) ( 1 / λ 0 ) { 1 [ Δ λ ( t ) / λ 0 ] } ,
Δ λ ( t ) d t = Δ Λ ( t ) ,
Φ ( t ) = ( 2 π / λ 0 ) l ( 2 π c / λ 0 2 ) [ Δ Λ ( t τ o ) Δ Λ ( t τ r ) ] ,
Δ Λ ( t τ o ) Δ Λ ( t τ r ) ( l / c ) Δ λ ( t ) ,
S ( t ) = cos [ α ( 2 π / λ 0 2 ) l Δ λ ( t ) ] ,
Δ i m ( t ) = a cos ( ω c t + θ ) ,
S ( t ) = cos [ z cos ( ω c t + θ ) + α ] ,
S ( t ) = ( cos α ) [ J 0 ( z ) 2 J 2 ( z ) cos ( 2 ω c t + 2 θ ) + ] ( sin α ) [ 2 J 1 ( z ) cos ( ω c t + θ ) 2 J 3 ( z ) cos ( 3 ω c t + 3 θ ) + ] ,
S ( t ) = cos [ z cos ( ω c t + θ ) + α + δ ( t ) ] ,
δ ( t ) = ( 2 π / λ 0 ) Δ l ( 2 π l / λ 0 2 ) ( Δ λ T + Δ λ I ) .
S F ( t ) = J 1 ( z ) sin [ α + δ ( t ) ] .
S 1 ( t ) = cos [ z 1 cos ( ω c 1 t + θ 1 ) + α 1 + δ 1 ( t ) ] ,
δ 1 ( t ) = ( 2 π / λ 01 ) Δ l ( 2 π l / λ 01 2 ) ( Δ λ T 1 + Δ λ I 1 ) , α 1 = ( 2 π / λ 01 ) l .
S 1 f ( t ) = cos [ z 1 f cos ( ω c 1 t + θ 1 ) + α 1 f + δ 1 f ( t ) ] ,
δ 1 f ( t ) = ( 2 π / λ 01 ) Δ l f ( 2 π l f / λ 01 2 ) ( Δ λ T 1 + Δ λ I 1 ) , α 1 f = ( 2 π / λ 01 ) l f .
α 1 = ( 2 π / λ 01 ) ( l l f ) .
δ 1 ( t ) = ( 2 π / λ 01 ) [ Δ l ( l / l f ) Δ l f ] .
S ( t ) = cos [ z 1 cos ( ω c 1 t + θ 1 ) + α 1 + δ 1 ( t ) ] + cos [ z 2 cos ( ω c 2 t + θ 2 ) + α 2 + δ 2 ( t ) ] ,
S f ( t ) = cos [ z 1 f cos ( ω c 1 t + θ 1 ) + α 1 f + δ 1 f ( t ) ] + cos [ z 2 f cos ( ω c 2 t + θ 2 ) + α 2 f + δ 2 f ( t ) ] .
λ e = ( λ 01 λ 02 ) / ( λ 01 λ 02 ) .
α = ( 2 π / λ e ) ( l l f ) + ( 2 π / λ e ) [ Δ l ¯ ( l / l f ) Δ l f ¯ ] ,
r i = ( λ e / 4 π ) ( α i + α i 1 + + α 1 + α 0 ) ,

Metrics