Abstract

An infrared-transmitting chalcogenide fiber was used as an optical probe to analyze qualitatively and quantitatively various chemical substances in aqueous solutions. An unclad fiber with 380-μm diameter was combined with a Fourier transform infrared spectrometer to monitor the concentration of the analytes in solutions by measuring the changes in the absorbance of their fundamental vibration peaks. A linear relationship was observed between the absorption by the evanescent field and concentrations of various analytes. For this study low concentrations of acetone, ethyl alcohol, and sulfuric acid were detected in aqueous solutions. The minimum detection limit for these three chemical substances was 5, 3, and 2 vol. %, respectively, with a sensor length of 15 cm. It was also demonstrated that the same sensor design is capable of monitoring gaseous species such as dichlorodifluoromethane.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Chan, H. Ito, H. Inaba, “Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link,” Appl. Opt. 23, 3415–3420 (1984).
    [CrossRef] [PubMed]
  2. K. Newby, W. M. Reichert, J. D. Andrade, R. E. Benner, “Remote spectroscopic sensing of chemical adsorption using a single multimode optical fiber,” Appl. Opt. 23, 1812–1815 (1984).
    [CrossRef] [PubMed]
  3. O. S. Wolfbeis, A. Sharma, “Fiber-optic fluorosensor for sulfur dioxide,” Anal. Chim. Acta 208, 53–58 (1988).
    [CrossRef]
  4. K. Chan, H. Ito, H. Inaba, “Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33 μm region,” Appl. Phys. Lett. 43, 634–636 (1983).
    [CrossRef]
  5. K. Chan, H. Ito, H. Inaba, “Absorption measurement of υ2 + 2υ3 band of CH4 at 1.33 μm using an InGaAsP light emitting diode,” Appl. Opt. 22, 3802–3804 (1983).
    [CrossRef] [PubMed]
  6. J. A. Harrington, “Infrared alkali halide fibers,” Appl. Opt. 27, 3097–3101 (1988).
    [CrossRef] [PubMed]
  7. D. Pruss, “Applications of infrared waveguides in remote gas-spectroscopy,” in Halide Glasses for Infrared Fiberoptics, R. M. Almeida, ed., Vol. 123 of NATO ASI series (Nijhoff, Dordrecht, The Netherlands, 1987).
    [CrossRef]
  8. S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Fluoride fibers for remote chemical sensing,” in Infrared Optical Materials IV, S. Musileant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.929, 106–114 (1988).
  9. S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Evaluation of an FTIR/fluoride optical fiber system for remote sensing of combustion products,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1172, 2–12 (1989).
  10. D. A. C. Compton, S. L. Hill, N. A. Wright, M. A. Druy, J. Piche, W. A. Stevenson, D. W. Vidrine, “In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber,” Appl. Spectrosc. 42, 972–979 (1988).
    [CrossRef]
  11. Z. U. Borisova, Glassy Semiconductor, translated by J. G. Adashko, (Plenum, New York, 1981).
  12. C. J. Poichert, The Aldrich Library of FT-IR Spectra (Adrich Chemical Company, Milwaukee, Wisconsin, 1985).
  13. R. C. Weast, M. J. Astle, W. H. Beyer, eds., CRC Handbook of Chemistry and Physics, 65th ed. (CRC, Boca Raton, Fla., 1985).
  14. M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
    [CrossRef]
  15. H. Tai, H. Tanaka, T. Yoshino, “Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392 μm line of He–Ne laser,” Opt. Lett. 12, 437–439 (1987).
    [CrossRef] [PubMed]
  16. N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, New York, 1979).
  17. J. Nishii, T. Yamashita, T. Yamagishi, “Chalcogenide glass fiber with a core–cladding structure,” Appl. Opt. 28, 5122–5127 (1989).
    [CrossRef] [PubMed]

1989

1988

O. S. Wolfbeis, A. Sharma, “Fiber-optic fluorosensor for sulfur dioxide,” Anal. Chim. Acta 208, 53–58 (1988).
[CrossRef]

J. A. Harrington, “Infrared alkali halide fibers,” Appl. Opt. 27, 3097–3101 (1988).
[CrossRef] [PubMed]

D. A. C. Compton, S. L. Hill, N. A. Wright, M. A. Druy, J. Piche, W. A. Stevenson, D. W. Vidrine, “In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber,” Appl. Spectrosc. 42, 972–979 (1988).
[CrossRef]

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

1987

1984

1983

K. Chan, H. Ito, H. Inaba, “Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33 μm region,” Appl. Phys. Lett. 43, 634–636 (1983).
[CrossRef]

K. Chan, H. Ito, H. Inaba, “Absorption measurement of υ2 + 2υ3 band of CH4 at 1.33 μm using an InGaAsP light emitting diode,” Appl. Opt. 22, 3802–3804 (1983).
[CrossRef] [PubMed]

Andrade, J. D.

Benner, R. E.

Borisova, Z. U.

Z. U. Borisova, Glassy Semiconductor, translated by J. G. Adashko, (Plenum, New York, 1981).

Burgess, L. W.

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Chan, K.

Compton, D. A. C.

DeGrandpre, M. D.

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Druy, M. A.

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, New York, 1979).

Harrington, J. A.

Hill, S. L.

Inaba, H.

Ito, H.

Newby, K.

Nishii, J.

Piche, J.

Poichert, C. J.

C. J. Poichert, The Aldrich Library of FT-IR Spectra (Adrich Chemical Company, Milwaukee, Wisconsin, 1985).

Pruss, D.

D. Pruss, “Applications of infrared waveguides in remote gas-spectroscopy,” in Halide Glasses for Infrared Fiberoptics, R. M. Almeida, ed., Vol. 123 of NATO ASI series (Nijhoff, Dordrecht, The Netherlands, 1987).
[CrossRef]

Reichert, W. M.

Saggese, S. J.

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Fluoride fibers for remote chemical sensing,” in Infrared Optical Materials IV, S. Musileant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.929, 106–114 (1988).

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Evaluation of an FTIR/fluoride optical fiber system for remote sensing of combustion products,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1172, 2–12 (1989).

Shahriari, M. R.

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Evaluation of an FTIR/fluoride optical fiber system for remote sensing of combustion products,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1172, 2–12 (1989).

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Fluoride fibers for remote chemical sensing,” in Infrared Optical Materials IV, S. Musileant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.929, 106–114 (1988).

Sharma, A.

O. S. Wolfbeis, A. Sharma, “Fiber-optic fluorosensor for sulfur dioxide,” Anal. Chim. Acta 208, 53–58 (1988).
[CrossRef]

Sigel, G. H.

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Fluoride fibers for remote chemical sensing,” in Infrared Optical Materials IV, S. Musileant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.929, 106–114 (1988).

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Evaluation of an FTIR/fluoride optical fiber system for remote sensing of combustion products,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1172, 2–12 (1989).

Stevenson, W. A.

Tai, H.

Tanaka, H.

Vidrine, D. W.

Wolfbeis, O. S.

O. S. Wolfbeis, A. Sharma, “Fiber-optic fluorosensor for sulfur dioxide,” Anal. Chim. Acta 208, 53–58 (1988).
[CrossRef]

Wright, N. A.

Yamagishi, T.

Yamashita, T.

Yoshino, T.

Anal. Chem.

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Anal. Chim. Acta

O. S. Wolfbeis, A. Sharma, “Fiber-optic fluorosensor for sulfur dioxide,” Anal. Chim. Acta 208, 53–58 (1988).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Chan, H. Ito, H. Inaba, “Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33 μm region,” Appl. Phys. Lett. 43, 634–636 (1983).
[CrossRef]

Appl. Spectrosc.

Opt. Lett.

Other

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, New York, 1979).

Z. U. Borisova, Glassy Semiconductor, translated by J. G. Adashko, (Plenum, New York, 1981).

C. J. Poichert, The Aldrich Library of FT-IR Spectra (Adrich Chemical Company, Milwaukee, Wisconsin, 1985).

R. C. Weast, M. J. Astle, W. H. Beyer, eds., CRC Handbook of Chemistry and Physics, 65th ed. (CRC, Boca Raton, Fla., 1985).

D. Pruss, “Applications of infrared waveguides in remote gas-spectroscopy,” in Halide Glasses for Infrared Fiberoptics, R. M. Almeida, ed., Vol. 123 of NATO ASI series (Nijhoff, Dordrecht, The Netherlands, 1987).
[CrossRef]

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Fluoride fibers for remote chemical sensing,” in Infrared Optical Materials IV, S. Musileant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.929, 106–114 (1988).

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Evaluation of an FTIR/fluoride optical fiber system for remote sensing of combustion products,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1172, 2–12 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental arrangements for the FTIR–chalcogenide fiber sensing.

Fig. 2
Fig. 2

Evanescent-wave absorption spectra of acetone–water mixture recorded with 15-cm sensor length in the concentration range of 10–100 vol. %.

Fig. 3
Fig. 3

Evanescent-wave absorption spectra of acetone–water mixture recorded with 15-cm sensor length in the concentration range of 0–10 vol. %.

Fig. 4
Fig. 4

Calibration curves for acetone in water from 5-, 10-, and 15-cm sensor lengths.

Fig. 5
Fig. 5

Evanescent-wave absorption spectra of ethyl alcohol–water mixture recorded with a 15-cm sensor length in the concentration range of 10–100 vol. %.

Fig. 6
Fig. 6

Evanescent-wave absorption spectra of ethyl alcohol–water mixture recorded with a 15-cm sensor length in the concentration range of 0–10 vol. %.

Fig. 7
Fig. 7

Calibration curve for ethyl alcohol in water from a 15-cm sensor length.

Fig. 8
Fig. 8

Evanescent-wave absorption spectra of sulfuric acid–water mixture recorded with a 15-cm sensor length in the concentration range of 10–100 vol. %.

Fig. 9
Fig. 9

Calibration curve for sulfuric acid in water from a 15-cm sensor length.

Fig. 10
Fig. 10

Evanescent-wave spectrum of gaseous dichlorodifluoromethane recorded using 10- and 15-cm sensor lengths.

Tables (1)

Tables Icon

Table 1 Least-Squares Regression Results of the Calibration Curves

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I / I 0 = 10 α e LC ,
E = E 0 e Z γ ,
γ = ( 2 π / λ ) ( sin 2 θ n 21 2 ) 1 / 2 ,

Metrics