Abstract

An eye-safe, tunable differential-absorption lidar system has been developed for the range-resolved measurement of aerosol backscatter and water vapor in the atmosphere. The lidar uses a flash-lamp-pumped, Q-switched, 10-mJ solid-state Ho:YSGG laser that is continuously tunable over a 20-cm−1 wavelength range near 2.084 μm. Both path-averaged and range-resolved measurements were performed with the Ho differential-absorption lidar system. Preliminary measurements have been made of the temporal variation of atmospheric aerosol backscatter and water-vapor profiles at ranges out to 1 km. These results indicate that the Ho lidar has the potential for the eye-safe remote sensing of atmospheric water vapor and backscatter profiles at longer ranges if suitably enhanced in laser power and laser linewidth.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
    [CrossRef] [PubMed]
  2. R. L. Byer, “Diode laser-pumped solid-state lasers,” Science 239, 742–747 (1988).
    [CrossRef] [PubMed]
  3. G. J. Quarles, A. Rosenbaum, C. L. Marquardt, L. Esterowitz, “High-efficiency 2.09 μm flashlamp-pumped laser,” Appl. Phys. Lett. 55, 1062–1064 (1989).
    [CrossRef]
  4. M. J. Kavaya, S. W. Henderson, E. C. Rusell, R. M. Huffaker, R. G. Frehlich, “Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling,” Appl. Opt. 28, 840–851 (1989).
    [CrossRef] [PubMed]
  5. N. Sugimoto, N. Sims, K. Chan, D. K. Killinger, “Eye-safe 2.1-μm Ho lidar for measuring atmospheric density profiles,” Opt. Lett. 15, 302–304 (1990).
    [CrossRef] [PubMed]
  6. P. W. Baker, “Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar,” Appl. Opt. 22, 2257–2264 (1983).
    [CrossRef] [PubMed]
  7. R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
    [CrossRef] [PubMed]
  8. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
    [CrossRef] [PubMed]
  9. E. V. Browell, T. D. Wilkerson, T. J. Mcllrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
    [CrossRef] [PubMed]
  10. G. Ehret, W. Renger, “Atmospheric aerosol and humidity profiling using an airborne DIAL system in the near IR,” in Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1990), paper ThA6-1.
  11. R. M. Schotland, in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), p. 273–283.
  12. V. V. Zuev, V. E. Zuev, Yu. S. Makushikin, V. N. Marichev, A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742–3746 (1983).
    [CrossRef] [PubMed]
  13. N. Menyuk, D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl and CH4 using a continuously tunable CO:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987).
    [CrossRef] [PubMed]
  14. L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillation from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
    [CrossRef]
  15. N. P. Barnes, D. J. Gettemy, “Pulsed Ho:YAG oscillator and amplifier,” IEEE J. Quantum Electron. QE-17, 1303–1308 (1981).
    [CrossRef]
  16. S. W. Henderson, C. P. Hale, “Tunable single-longitudinal-mode diode pumped Tm:Ho:YAG laser,” Appl. Opt. 29, 1716–1718 (1990).
    [CrossRef] [PubMed]
  17. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
    [CrossRef]
  18. R. A. McClatchey, J. E. Selby, “Atmospheric attenuation of laser radiation from 0.76 to 31.25 μm” Environmental Research Paper 460 (U.S. Air Force Cambridge Research Laboratories, Bedford, Mass., 1974).
  19. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  20. R. R. Gamache, R. W. Davies, “Theoretical calculations of N2-broadened halfwidths of H2O using quantum fourier transform theory,” Appl. Opt. 22, 4013–4019 (1983).
    [CrossRef] [PubMed]
  21. R. T. H. Collis, “Lidar,” Appl. Opt. 9, 1782–1788 (1970).
    [CrossRef] [PubMed]
  22. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]
  23. Y. Sasano, H. Shimizu, N. Takeuchi, M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18, 3908–3910 (1979).
    [CrossRef] [PubMed]
  24. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  25. E. V. Browell, A. K. Goroch, T. D. Wilderson, S. Ismail, “Airborne DIAL water vapor and aerosol measurements over the Gulf stream wall,” presented at the 12th International Laser Radar Conference, Aix en Provence, France, 13–17 Aug., 1984.
  26. E. V. Brownell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
    [CrossRef]

1991 (1)

1990 (2)

1989 (2)

1988 (2)

R. L. Byer, “Diode laser-pumped solid-state lasers,” Science 239, 742–747 (1988).
[CrossRef] [PubMed]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

1987 (4)

1984 (1)

1983 (3)

1981 (2)

N. P. Barnes, D. J. Gettemy, “Pulsed Ho:YAG oscillator and amplifier,” IEEE J. Quantum Electron. QE-17, 1303–1308 (1981).
[CrossRef]

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

1979 (2)

1974 (1)

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

1970 (1)

1965 (1)

L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillation from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Baker, P. W.

Barbe, A.

Barnes, N. P.

N. P. Barnes, D. J. Gettemy, “Pulsed Ho:YAG oscillator and amplifier,” IEEE J. Quantum Electron. QE-17, 1303–1308 (1981).
[CrossRef]

Brothers, A. M.

Browell, E. V.

E. V. Browell, T. D. Wilkerson, T. J. Mcllrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

E. V. Browell, A. K. Goroch, T. D. Wilderson, S. Ismail, “Airborne DIAL water vapor and aerosol measurements over the Gulf stream wall,” presented at the 12th International Laser Radar Conference, Aix en Provence, France, 13–17 Aug., 1984.

Brown, L. R.

Brownell, E. V.

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

R. L. Byer, “Diode laser-pumped solid-state lasers,” Science 239, 742–747 (1988).
[CrossRef] [PubMed]

Camy-Peyret, C.

Chan, K.

Collis, R. T. H.

Davies, R. W.

Ehret, G.

G. Ehret, W. Renger, “Atmospheric aerosol and humidity profiling using an airborne DIAL system in the near IR,” in Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1990), paper ThA6-1.

Esterowitz, L.

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, L. Esterowitz, “High-efficiency 2.09 μm flashlamp-pumped laser,” Appl. Phys. Lett. 55, 1062–1064 (1989).
[CrossRef]

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

Flaud, J.-M.

Frehlich, R. G.

Gamache, R. R.

Gettemy, D. J.

N. P. Barnes, D. J. Gettemy, “Pulsed Ho:YAG oscillator and amplifier,” IEEE J. Quantum Electron. QE-17, 1303–1308 (1981).
[CrossRef]

Geusic, J. E.

L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillation from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Goldman, A.

Goroch, A. K.

E. V. Browell, A. K. Goroch, T. D. Wilderson, S. Ismail, “Airborne DIAL water vapor and aerosol measurements over the Gulf stream wall,” presented at the 12th International Laser Radar Conference, Aix en Provence, France, 13–17 Aug., 1984.

Grant, W. B.

Grossmann, B. E.

Hale, C. P.

Hardesty, R. M.

Henderson, S. W.

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

Huffaker, R. M.

Husson, N.

Ismail, S.

E. V. Brownell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
[CrossRef]

E. V. Browell, A. K. Goroch, T. D. Wilderson, S. Ismail, “Airborne DIAL water vapor and aerosol measurements over the Gulf stream wall,” presented at the 12th International Laser Radar Conference, Aix en Provence, France, 13–17 Aug., 1984.

Johnson, L. F.

L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillation from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Kavaya, M. J.

Killinger, D. K.

Klett, J. D.

Makushikin, Yu. S.

Margolis, J. S.

Marichev, V. N.

Marquardt, C. L.

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, L. Esterowitz, “High-efficiency 2.09 μm flashlamp-pumped laser,” Appl. Phys. Lett. 55, 1062–1064 (1989).
[CrossRef]

McClatchey, R. A.

R. A. McClatchey, J. E. Selby, “Atmospheric attenuation of laser radiation from 0.76 to 31.25 μm” Environmental Research Paper 460 (U.S. Air Force Cambridge Research Laboratories, Bedford, Mass., 1974).

Mcllrath, T. J.

Menyuk, N.

Mitsel, A. A.

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

Okuda, M.

Pickett, H. M.

Poynter, R. L.

Quarles, G. J.

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, L. Esterowitz, “High-efficiency 2.09 μm flashlamp-pumped laser,” Appl. Phys. Lett. 55, 1062–1064 (1989).
[CrossRef]

Renger, W.

G. Ehret, W. Renger, “Atmospheric aerosol and humidity profiling using an airborne DIAL system in the near IR,” in Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1990), paper ThA6-1.

Rinsland, C. P.

Rosenbaum, A.

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, L. Esterowitz, “High-efficiency 2.09 μm flashlamp-pumped laser,” Appl. Phys. Lett. 55, 1062–1064 (1989).
[CrossRef]

Rothman, L. S.

Rusell, E. C.

Sasano, Y.

Schotland, R. M.

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

R. M. Schotland, in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), p. 273–283.

Selby, J. E.

R. A. McClatchey, J. E. Selby, “Atmospheric attenuation of laser radiation from 0.76 to 31.25 μm” Environmental Research Paper 460 (U.S. Air Force Cambridge Research Laboratories, Bedford, Mass., 1974).

Shimizu, H.

Sims, N.

Smith, M. A. H.

Sugimoto, N.

Takeuchi, N.

Toth, R. A.

Tratt, D. M.

Van Uitert, L. G.

L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillation from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Wilderson, T. D.

E. V. Browell, A. K. Goroch, T. D. Wilderson, S. Ismail, “Airborne DIAL water vapor and aerosol measurements over the Gulf stream wall,” presented at the 12th International Laser Radar Conference, Aix en Provence, France, 13–17 Aug., 1984.

Wilkerson, T. D.

Zuev, V. E.

Zuev, V. V.

Appl. Opt. (14)

M. J. Kavaya, S. W. Henderson, E. C. Rusell, R. M. Huffaker, R. G. Frehlich, “Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling,” Appl. Opt. 28, 840–851 (1989).
[CrossRef] [PubMed]

P. W. Baker, “Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar,” Appl. Opt. 22, 2257–2264 (1983).
[CrossRef] [PubMed]

R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
[CrossRef] [PubMed]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
[CrossRef] [PubMed]

E. V. Browell, T. D. Wilkerson, T. J. Mcllrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

V. V. Zuev, V. E. Zuev, Yu. S. Makushikin, V. N. Marichev, A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742–3746 (1983).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl and CH4 using a continuously tunable CO:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

R. R. Gamache, R. W. Davies, “Theoretical calculations of N2-broadened halfwidths of H2O using quantum fourier transform theory,” Appl. Opt. 22, 4013–4019 (1983).
[CrossRef] [PubMed]

R. T. H. Collis, “Lidar,” Appl. Opt. 9, 1782–1788 (1970).
[CrossRef] [PubMed]

S. W. Henderson, C. P. Hale, “Tunable single-longitudinal-mode diode pumped Tm:Ho:YAG laser,” Appl. Opt. 29, 1716–1718 (1990).
[CrossRef] [PubMed]

Y. Sasano, H. Shimizu, N. Takeuchi, M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18, 3908–3910 (1979).
[CrossRef] [PubMed]

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

E. V. Brownell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
[CrossRef]

Appl. Phys. Lett. (2)

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, L. Esterowitz, “High-efficiency 2.09 μm flashlamp-pumped laser,” Appl. Phys. Lett. 55, 1062–1064 (1989).
[CrossRef]

L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillation from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. P. Barnes, D. J. Gettemy, “Pulsed Ho:YAG oscillator and amplifier,” IEEE J. Quantum Electron. QE-17, 1303–1308 (1981).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

J. Appl. Meteorol. (1)

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Opt. Lett. (1)

Science (2)

D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
[CrossRef] [PubMed]

R. L. Byer, “Diode laser-pumped solid-state lasers,” Science 239, 742–747 (1988).
[CrossRef] [PubMed]

Other (4)

G. Ehret, W. Renger, “Atmospheric aerosol and humidity profiling using an airborne DIAL system in the near IR,” in Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1990), paper ThA6-1.

R. M. Schotland, in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), p. 273–283.

R. A. McClatchey, J. E. Selby, “Atmospheric attenuation of laser radiation from 0.76 to 31.25 μm” Environmental Research Paper 460 (U.S. Air Force Cambridge Research Laboratories, Bedford, Mass., 1974).

E. V. Browell, A. K. Goroch, T. D. Wilderson, S. Ismail, “Airborne DIAL water vapor and aerosol measurements over the Gulf stream wall,” presented at the 12th International Laser Radar Conference, Aix en Provence, France, 13–17 Aug., 1984.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the Ho lidar–DIAL system; Det, detector; pyro, pyroelectric.

Fig. 2
Fig. 2

Measured tuning range of the Ho:YSGG laser using tilted intracavity étalons. (a) One étalon (thickness 0.17 mm) was used in the non-Q-switched laser cavity, (b) Two étalons (thicknesses 0.2 and 1.0 mm) were used in the Q-switched laser cavity.

Fig. 3
Fig. 3

Calculated atmospheric transmittance near the 2.084-μm wavelength region over a 10-km horizontal path showing overlap of the Ho:YSGG laser-tuning range. The three stronger absorption lines are due to water vapor, and the weak background absorption lines are due to CO2.

Fig. 4
Fig. 4

Lidar returns backscattered from a building 1.1 km away as a function of the Ho:YSGG laser wavelength. The absorption line is due to water vapor in the atmosphere.

Fig. 5
Fig. 5

Ho lidar/DIAL measurements of the temporal variation of (a) the atmospheric aerosol backscattering profile and (b) the atmospheric water-vapor concentration profile. The lidar was pointed at approximately a +2° elevation angle.

Metrics