Abstract

Polarization lidar data are used to demonstrate that clouds composed of hexagonal ice crystals can generate multiple-ringed colored coronas. Although relatively uncommon in our mid-latitude cirrus sample (derived from Project FIRE extended time observations), the coronas are associated with unusual cloud conditions that appear to be effective in generating the displays. Invariably, the cirrus cloud tops are located at or slightly above elevated tropopauses (12.7-km MSL average height) at temperatures between −60° and −70°C. The cloud top region also generates relatively strong laser backscattering and unusually high 0.5–0.7 linear depolarization ratios. Color photograph analysis of corona ring angles indicates crystals with mean diameters of from 12 to 30 μm. The cirrus cloud types were mainly subvisual to thin (i.e., bluish-colored) cirrostratus, but also included fibrous cirrus. Estimated cloud optical thicknesses at the 0.694-μm laser wavelength ranged from ~0.001 to 0.2, where the upper limit reflects the effects of multiple scattering and/or unfavorable changes in particle characteristics in deep cirrus clouds.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sassen, “Iridescence in an aircraft contrail,” J. Opt. Soc. Am. 69, 1080–1083 (1979).
    [Crossref]
  2. W. J. Humphries, Physics of the Air (McGraw-Hill, New York, 1929).
  3. M. Minnaert, The Nature of Light and Color in the Open Air (Dover, New York, 1954).
  4. G. C. Simpson, “Corona and iridescent clouds,” Q. J. R. Meteorol. Soc. 38, 291–299 (1912).
    [Crossref]
  5. K. Sassen, M. K. Griffin, G. C. Dodd, “Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
    [Crossref]
  6. J. A. Lock, L. Yang, “Mie theory of the corona,” Appl. Opt. 30, 3408–3414 (1991).
    [Crossref] [PubMed]
  7. J. G. Wilson, “Note on optical methods of measuring the size of small water drops,” Proc. Cambridge Philos. Soc. 32, 493–498 (1936).
    [Crossref]
  8. Y. G. Naik, “Correlation between optical and dynamic methods of measuring size of water drops in a cloud,” J. Colloid Sci. 9, 393–399 (1954).
    [Crossref]
  9. H. C. van de Hulst, Light Scattering from Small Particles (Wiley, New York, 1957).
  10. Since tropical cirrus frequently form in conditions similar to those reported here, it is possible that cirrus cloud coronas may be relatively more common in tropical and subtropical regions. However, the average δ = 0.3 reported for tropical cirrus (see Ref. 11) is only approximately one half of our value, so it is unclear whether similar particles are present.
  11. C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
    [Crossref]
  12. A. J. Heymsfield, C. M. R. Platt, “A parametrization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
    [Crossref]
  13. K. Sassen, D. O’C. Starr, T. Uttal, “Mesoscale and microscale structure of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
    [Crossref]
  14. C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
    [Crossref]
  15. A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The October 27–28, 1989 FIRE cirrus case study: cloud structure and composition from in situ measurements,” Mon. Weather Rev. 118, 2313–2328 (1991).
    [Crossref]
  16. K. Sassen, A. J. Heymsfield, D. O’C. Starr, “Is there a cirrus small particle radiative anomaly?” presented at Conference on Cloud Physics, San Francisco, CA, Preprints available from American Meteorological Society, Boston, Mass.
  17. P. Minnis, D. F. Young, K. Sassen, J. M. Alverez, C. J. Grund, “The 27–28 October 1986 FIRE IFO cirrus case study: cirrus parameter relationships derived from satellite and lidar Data,” Mon. Weather Rev. 118, 2402–2425 (1991).
    [Crossref]
  18. K. Sassen, K. N. Lious, “Scattering of polarized laser light by water droplet, mixed phase and ice clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
    [Crossref]
  19. A. J. Heymsfleld, “Ice particles observed in a cirriform cloud at −83°C and implications for polar stratospheric clouds,” J. Atmos. Sci. 43, 851–855 (1986).
    [Crossref]
  20. K. Sassen, C. J. Grund, J. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
    [Crossref]

1991 (3)

J. A. Lock, L. Yang, “Mie theory of the corona,” Appl. Opt. 30, 3408–3414 (1991).
[Crossref] [PubMed]

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The October 27–28, 1989 FIRE cirrus case study: cloud structure and composition from in situ measurements,” Mon. Weather Rev. 118, 2313–2328 (1991).
[Crossref]

P. Minnis, D. F. Young, K. Sassen, J. M. Alverez, C. J. Grund, “The 27–28 October 1986 FIRE IFO cirrus case study: cirrus parameter relationships derived from satellite and lidar Data,” Mon. Weather Rev. 118, 2402–2425 (1991).
[Crossref]

1990 (1)

K. Sassen, C. J. Grund, J. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[Crossref]

1989 (3)

K. Sassen, D. O’C. Starr, T. Uttal, “Mesoscale and microscale structure of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
[Crossref]

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
[Crossref]

K. Sassen, M. K. Griffin, G. C. Dodd, “Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
[Crossref]

1987 (1)

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[Crossref]

1986 (1)

A. J. Heymsfleld, “Ice particles observed in a cirriform cloud at −83°C and implications for polar stratospheric clouds,” J. Atmos. Sci. 43, 851–855 (1986).
[Crossref]

1984 (1)

A. J. Heymsfield, C. M. R. Platt, “A parametrization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[Crossref]

1979 (2)

K. Sassen, “Iridescence in an aircraft contrail,” J. Opt. Soc. Am. 69, 1080–1083 (1979).
[Crossref]

K. Sassen, K. N. Lious, “Scattering of polarized laser light by water droplet, mixed phase and ice clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[Crossref]

1954 (1)

Y. G. Naik, “Correlation between optical and dynamic methods of measuring size of water drops in a cloud,” J. Colloid Sci. 9, 393–399 (1954).
[Crossref]

1936 (1)

J. G. Wilson, “Note on optical methods of measuring the size of small water drops,” Proc. Cambridge Philos. Soc. 32, 493–498 (1936).
[Crossref]

1912 (1)

G. C. Simpson, “Corona and iridescent clouds,” Q. J. R. Meteorol. Soc. 38, 291–299 (1912).
[Crossref]

Alvarez, J. M.

K. Sassen, C. J. Grund, J. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[Crossref]

Alverez, J. M.

P. Minnis, D. F. Young, K. Sassen, J. M. Alverez, C. J. Grund, “The 27–28 October 1986 FIRE IFO cirrus case study: cirrus parameter relationships derived from satellite and lidar Data,” Mon. Weather Rev. 118, 2402–2425 (1991).
[Crossref]

Dilley, A. C.

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[Crossref]

Dodd, G. C.

K. Sassen, M. K. Griffin, G. C. Dodd, “Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
[Crossref]

Griffin, M. K.

K. Sassen, M. K. Griffin, G. C. Dodd, “Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
[Crossref]

Grund, C. J.

P. Minnis, D. F. Young, K. Sassen, J. M. Alverez, C. J. Grund, “The 27–28 October 1986 FIRE IFO cirrus case study: cirrus parameter relationships derived from satellite and lidar Data,” Mon. Weather Rev. 118, 2402–2425 (1991).
[Crossref]

K. Sassen, C. J. Grund, J. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[Crossref]

Hardesty, M.

K. Sassen, C. J. Grund, J. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[Crossref]

Hart, W. D.

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
[Crossref]

Heymsfield, A. J.

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The October 27–28, 1989 FIRE cirrus case study: cloud structure and composition from in situ measurements,” Mon. Weather Rev. 118, 2313–2328 (1991).
[Crossref]

A. J. Heymsfield, C. M. R. Platt, “A parametrization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[Crossref]

K. Sassen, A. J. Heymsfield, D. O’C. Starr, “Is there a cirrus small particle radiative anomaly?” presented at Conference on Cloud Physics, San Francisco, CA, Preprints available from American Meteorological Society, Boston, Mass.

Heymsfleld, A. J.

A. J. Heymsfleld, “Ice particles observed in a cirriform cloud at −83°C and implications for polar stratospheric clouds,” J. Atmos. Sci. 43, 851–855 (1986).
[Crossref]

Humphries, W. J.

W. J. Humphries, Physics of the Air (McGraw-Hill, New York, 1929).

Lious, K. N.

K. Sassen, K. N. Lious, “Scattering of polarized laser light by water droplet, mixed phase and ice clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[Crossref]

Lock, J. A.

Miller, K. M.

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The October 27–28, 1989 FIRE cirrus case study: cloud structure and composition from in situ measurements,” Mon. Weather Rev. 118, 2313–2328 (1991).
[Crossref]

Minnaert, M.

M. Minnaert, The Nature of Light and Color in the Open Air (Dover, New York, 1954).

Minnis, P.

P. Minnis, D. F. Young, K. Sassen, J. M. Alverez, C. J. Grund, “The 27–28 October 1986 FIRE IFO cirrus case study: cirrus parameter relationships derived from satellite and lidar Data,” Mon. Weather Rev. 118, 2402–2425 (1991).
[Crossref]

Naik, Y. G.

Y. G. Naik, “Correlation between optical and dynamic methods of measuring size of water drops in a cloud,” J. Colloid Sci. 9, 393–399 (1954).
[Crossref]

Platt, C. M. R.

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
[Crossref]

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[Crossref]

A. J. Heymsfield, C. M. R. Platt, “A parametrization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[Crossref]

Sassen, K.

P. Minnis, D. F. Young, K. Sassen, J. M. Alverez, C. J. Grund, “The 27–28 October 1986 FIRE IFO cirrus case study: cirrus parameter relationships derived from satellite and lidar Data,” Mon. Weather Rev. 118, 2402–2425 (1991).
[Crossref]

K. Sassen, C. J. Grund, J. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[Crossref]

K. Sassen, D. O’C. Starr, T. Uttal, “Mesoscale and microscale structure of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
[Crossref]

K. Sassen, M. K. Griffin, G. C. Dodd, “Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
[Crossref]

K. Sassen, “Iridescence in an aircraft contrail,” J. Opt. Soc. Am. 69, 1080–1083 (1979).
[Crossref]

K. Sassen, K. N. Lious, “Scattering of polarized laser light by water droplet, mixed phase and ice clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[Crossref]

K. Sassen, A. J. Heymsfield, D. O’C. Starr, “Is there a cirrus small particle radiative anomaly?” presented at Conference on Cloud Physics, San Francisco, CA, Preprints available from American Meteorological Society, Boston, Mass.

Scott, J. C.

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[Crossref]

Simpson, G. C.

G. C. Simpson, “Corona and iridescent clouds,” Q. J. R. Meteorol. Soc. 38, 291–299 (1912).
[Crossref]

Spinhirne, J.

K. Sassen, C. J. Grund, J. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[Crossref]

Spinhirne, J. D.

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The October 27–28, 1989 FIRE cirrus case study: cloud structure and composition from in situ measurements,” Mon. Weather Rev. 118, 2313–2328 (1991).
[Crossref]

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
[Crossref]

Starr, D. O’C.

K. Sassen, D. O’C. Starr, T. Uttal, “Mesoscale and microscale structure of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
[Crossref]

K. Sassen, A. J. Heymsfield, D. O’C. Starr, “Is there a cirrus small particle radiative anomaly?” presented at Conference on Cloud Physics, San Francisco, CA, Preprints available from American Meteorological Society, Boston, Mass.

Uttal, T.

K. Sassen, D. O’C. Starr, T. Uttal, “Mesoscale and microscale structure of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
[Crossref]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering from Small Particles (Wiley, New York, 1957).

Wilson, J. G.

J. G. Wilson, “Note on optical methods of measuring the size of small water drops,” Proc. Cambridge Philos. Soc. 32, 493–498 (1936).
[Crossref]

Yang, L.

Young, D. F.

P. Minnis, D. F. Young, K. Sassen, J. M. Alverez, C. J. Grund, “The 27–28 October 1986 FIRE IFO cirrus case study: cirrus parameter relationships derived from satellite and lidar Data,” Mon. Weather Rev. 118, 2402–2425 (1991).
[Crossref]

Appl. Opt. (1)

J. Appl. Meteorol. (1)

K. Sassen, M. K. Griffin, G. C. Dodd, “Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28, 91–98 (1989).
[Crossref]

J. Atmos. Sci. (5)

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[Crossref]

A. J. Heymsfield, C. M. R. Platt, “A parametrization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[Crossref]

K. Sassen, D. O’C. Starr, T. Uttal, “Mesoscale and microscale structure of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989).
[Crossref]

K. Sassen, K. N. Lious, “Scattering of polarized laser light by water droplet, mixed phase and ice clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[Crossref]

A. J. Heymsfleld, “Ice particles observed in a cirriform cloud at −83°C and implications for polar stratospheric clouds,” J. Atmos. Sci. 43, 851–855 (1986).
[Crossref]

J. Colloid Sci. (1)

Y. G. Naik, “Correlation between optical and dynamic methods of measuring size of water drops in a cloud,” J. Colloid Sci. 9, 393–399 (1954).
[Crossref]

J. Geophys. Res. (1)

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
[Crossref]

J. Opt. Soc. Am. (1)

Mon. Weather Rev. (3)

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The October 27–28, 1989 FIRE cirrus case study: cloud structure and composition from in situ measurements,” Mon. Weather Rev. 118, 2313–2328 (1991).
[Crossref]

K. Sassen, C. J. Grund, J. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[Crossref]

P. Minnis, D. F. Young, K. Sassen, J. M. Alverez, C. J. Grund, “The 27–28 October 1986 FIRE IFO cirrus case study: cirrus parameter relationships derived from satellite and lidar Data,” Mon. Weather Rev. 118, 2402–2425 (1991).
[Crossref]

Proc. Cambridge Philos. Soc. (1)

J. G. Wilson, “Note on optical methods of measuring the size of small water drops,” Proc. Cambridge Philos. Soc. 32, 493–498 (1936).
[Crossref]

Q. J. R. Meteorol. Soc. (1)

G. C. Simpson, “Corona and iridescent clouds,” Q. J. R. Meteorol. Soc. 38, 291–299 (1912).
[Crossref]

Other (5)

W. J. Humphries, Physics of the Air (McGraw-Hill, New York, 1929).

M. Minnaert, The Nature of Light and Color in the Open Air (Dover, New York, 1954).

H. C. van de Hulst, Light Scattering from Small Particles (Wiley, New York, 1957).

Since tropical cirrus frequently form in conditions similar to those reported here, it is possible that cirrus cloud coronas may be relatively more common in tropical and subtropical regions. However, the average δ = 0.3 reported for tropical cirrus (see Ref. 11) is only approximately one half of our value, so it is unclear whether similar particles are present.

K. Sassen, A. J. Heymsfield, D. O’C. Starr, “Is there a cirrus small particle radiative anomaly?” presented at Conference on Cloud Physics, San Francisco, CA, Preprints available from American Meteorological Society, Boston, Mass.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Plot of the dependence of corona red ring radii of order n = 1–3 on spherical particle diameter, derived from simple diffraction theory [Eq. (1), inserted]. The relative size of the solar (or lunar) disk, which precludes corona formation from large particles, and the approximate onset of anomalous diffraction (dashed curve), which interferes with corona formation from small water spheres, are indicated.

Fig. 2
Fig. 2

Height versus time displays of polarization lidar data, along with generally concurrent temperature sounding data, from each of the corona-producing cirrus case studies on the indicated dates. Left of each pair shows a gray scale display of the log of range-normalized returned laser power (where the strongest returns in each plot are shaded black, and lighter shadings occur at −4.86-dB intervals of the peak value), and linear depolarization ratios are shown at right according to the following symbol key: ■, δ < 0.15; ●, 0.15–0.24; ÷, 0.25–0.34; −, 0.35–0.44; ×, 0.45–0.54; ★, 0.55–0.64; and ▲, 0.65–0.80. (Typical cirrus would encompass the ÷, −, and × symbols, whereas the star and triangle symbols indicate unusually high depolarizations for cirrus.) The time scales shown apply only to the bottom display in each of the two parts; the times of the other panels are (a) 2230–0130, (b) 2210–0010, (c) 2040–2240, (d) 0300–0500, (f) 0320–0520, (g) 2030–2330, (h) 0500–0700, and (i) 0500–0700. Vertical arrows in the returned laser power displays indicate the times that corona photographs were taken.

Fig. 3
Fig. 3

Representative fisheye photographs obtained at (a) 2237 on 6 Apr. 1989, (b) 2206 on 6 Apr. 1990, and (c) 2111 on 3 June 1990, illustrating the thin to subvisual cirrus cloud conditions usually associated with cirrus coronas. See Plates 12(a)–12(d) for the corona displays generated by these cirrus.

Fig. 4
Fig. 4

Summary of lidar-derived corona-producing cirrus cloud heights (vertical lines showing cloud thickness during the displays), and mean particle diameters derived from corona (●) and aureole (○) photographs plotted against tropopause (i.e., approximate cloud top) temperature.

Fig. 5
Fig. 5

Comparison of measured corona radii and indicated mean particle diameters for cirrus ice crystal (*) and water droplet (○) (see Ref. 6) clouds.

Tables (1)

Tables Icon

Table I Physical and Inferred Microphysical Characteristics of the Cirrus Clouds Observed to Generate Two- and Three-Ringed Coronas

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin θ = ( n + 0.22 ) λ / d ,

Metrics