Abstract

Novel acousto-optic processors for control and signal processing in phased-array antennas are presented. These processors can operate in both the antenna transmit and receive modes. An experimental acousto-optic processor is demonstrated in the laboratory. This optical technique replaces all the phase-shifting devices required in electronically controlled phased-array antennas.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Lambert, M. Arm, A. Aimette, “Electro-optical signal processors for phased array antennas,” in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, eds. (MIT Press, Cambridge, Mass., 1965), Chap. 38.
  2. M. King, W. R. Bennett, L. B. Lambert, M. Arm, “Real-time electro-optical signal processors with coherent detection,” Appl. Opt. 6, 1367–1375 (1967).
    [CrossRef] [PubMed]
  3. D. Casasent, F. Cassasayas, “Electro-optical processing of phased array antenna data,” IEEE Trans. Aerosp. Electron. Syst. AES-11, 65 (1975).
    [CrossRef]
  4. D. Casasent, “Radar signal processing,” in Optical Data Processing: Applications, D. Casacent, ed., Vol. 23 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), Sec. 8.4.
  5. K. B. Bhasin, B. M. Hendrickson, eds., Opto-Electronic Signal Processing for Phased Array Antennas, Proc. Soc. Photo-Opt. Instrum. Eng.886 (1988).
  6. J. J. Pan, “Fiber optics for wideband extra high frequency (EHF) phased arrays,” in Opto-electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886, 60–70 (1988).
  7. M. H. Popek, “Electro-optic system components for phased array radar applications,” in Opto-Electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886, 32–45 (1988).
  8. G. A. Koepf, “Optical processor for phased array antenna beam forming,” in Optical Technology for Microwave Applications, S.-K. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.477, 75–81 (1984).
  9. L. P. Anderson, F. Boldissar, D. C. D. Chang, “Antenna beamforming using optical processing,” in Opto-Electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886 (1988), paper 27.
  10. I. C. Chang, S. S. Tarng, “Phased array beamforming using acousto-optic techniques,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.936, 163–167 (1988).
  11. N. A. Riza, D. Psaltis, “An acousto-optic technique for beam scanning and beam formation in phased array radars,” in Annual Meeting Technical Digest, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper ThT5.
  12. N. A. Riza, “Novel acousto-optic systems for spectrum analysis and phased array radar signal processing,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1989).
  13. N. A. Riza, “Acousto-optic architectures for multidimensional phased array antenna processing,” in Optical Technology for Microwave ApplicationsV. S. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1476, (to be published).
  14. M. L. Skolnik, Introduction to Radar Systems (McGraw-Hill, New York, 1981), Chap. 8.
  15. R. J. Mailloux, “Phased array theory and technology,” Proc. IEEE 70, 246–291 (1982).
    [CrossRef]

1982 (1)

R. J. Mailloux, “Phased array theory and technology,” Proc. IEEE 70, 246–291 (1982).
[CrossRef]

1975 (1)

D. Casasent, F. Cassasayas, “Electro-optical processing of phased array antenna data,” IEEE Trans. Aerosp. Electron. Syst. AES-11, 65 (1975).
[CrossRef]

1967 (1)

Aimette, A.

L. B. Lambert, M. Arm, A. Aimette, “Electro-optical signal processors for phased array antennas,” in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, eds. (MIT Press, Cambridge, Mass., 1965), Chap. 38.

Anderson, L. P.

L. P. Anderson, F. Boldissar, D. C. D. Chang, “Antenna beamforming using optical processing,” in Opto-Electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886 (1988), paper 27.

Arm, M.

M. King, W. R. Bennett, L. B. Lambert, M. Arm, “Real-time electro-optical signal processors with coherent detection,” Appl. Opt. 6, 1367–1375 (1967).
[CrossRef] [PubMed]

L. B. Lambert, M. Arm, A. Aimette, “Electro-optical signal processors for phased array antennas,” in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, eds. (MIT Press, Cambridge, Mass., 1965), Chap. 38.

Bennett, W. R.

Boldissar, F.

L. P. Anderson, F. Boldissar, D. C. D. Chang, “Antenna beamforming using optical processing,” in Opto-Electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886 (1988), paper 27.

Casasent, D.

D. Casasent, F. Cassasayas, “Electro-optical processing of phased array antenna data,” IEEE Trans. Aerosp. Electron. Syst. AES-11, 65 (1975).
[CrossRef]

D. Casasent, “Radar signal processing,” in Optical Data Processing: Applications, D. Casacent, ed., Vol. 23 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), Sec. 8.4.

Cassasayas, F.

D. Casasent, F. Cassasayas, “Electro-optical processing of phased array antenna data,” IEEE Trans. Aerosp. Electron. Syst. AES-11, 65 (1975).
[CrossRef]

Chang, D. C. D.

L. P. Anderson, F. Boldissar, D. C. D. Chang, “Antenna beamforming using optical processing,” in Opto-Electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886 (1988), paper 27.

Chang, I. C.

I. C. Chang, S. S. Tarng, “Phased array beamforming using acousto-optic techniques,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.936, 163–167 (1988).

King, M.

Koepf, G. A.

G. A. Koepf, “Optical processor for phased array antenna beam forming,” in Optical Technology for Microwave Applications, S.-K. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.477, 75–81 (1984).

Lambert, L. B.

M. King, W. R. Bennett, L. B. Lambert, M. Arm, “Real-time electro-optical signal processors with coherent detection,” Appl. Opt. 6, 1367–1375 (1967).
[CrossRef] [PubMed]

L. B. Lambert, M. Arm, A. Aimette, “Electro-optical signal processors for phased array antennas,” in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, eds. (MIT Press, Cambridge, Mass., 1965), Chap. 38.

Mailloux, R. J.

R. J. Mailloux, “Phased array theory and technology,” Proc. IEEE 70, 246–291 (1982).
[CrossRef]

Pan, J. J.

J. J. Pan, “Fiber optics for wideband extra high frequency (EHF) phased arrays,” in Opto-electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886, 60–70 (1988).

Popek, M. H.

M. H. Popek, “Electro-optic system components for phased array radar applications,” in Opto-Electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886, 32–45 (1988).

Psaltis, D.

N. A. Riza, D. Psaltis, “An acousto-optic technique for beam scanning and beam formation in phased array radars,” in Annual Meeting Technical Digest, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper ThT5.

Riza, N. A.

N. A. Riza, “Acousto-optic architectures for multidimensional phased array antenna processing,” in Optical Technology for Microwave ApplicationsV. S. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1476, (to be published).

N. A. Riza, D. Psaltis, “An acousto-optic technique for beam scanning and beam formation in phased array radars,” in Annual Meeting Technical Digest, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper ThT5.

N. A. Riza, “Novel acousto-optic systems for spectrum analysis and phased array radar signal processing,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1989).

Skolnik, M. L.

M. L. Skolnik, Introduction to Radar Systems (McGraw-Hill, New York, 1981), Chap. 8.

Tarng, S. S.

I. C. Chang, S. S. Tarng, “Phased array beamforming using acousto-optic techniques,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.936, 163–167 (1988).

Appl. Opt. (1)

IEEE Trans. Aerosp. Electron. Syst. (1)

D. Casasent, F. Cassasayas, “Electro-optical processing of phased array antenna data,” IEEE Trans. Aerosp. Electron. Syst. AES-11, 65 (1975).
[CrossRef]

Proc. IEEE (1)

R. J. Mailloux, “Phased array theory and technology,” Proc. IEEE 70, 246–291 (1982).
[CrossRef]

Other (12)

L. B. Lambert, M. Arm, A. Aimette, “Electro-optical signal processors for phased array antennas,” in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, eds. (MIT Press, Cambridge, Mass., 1965), Chap. 38.

D. Casasent, “Radar signal processing,” in Optical Data Processing: Applications, D. Casacent, ed., Vol. 23 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), Sec. 8.4.

K. B. Bhasin, B. M. Hendrickson, eds., Opto-Electronic Signal Processing for Phased Array Antennas, Proc. Soc. Photo-Opt. Instrum. Eng.886 (1988).

J. J. Pan, “Fiber optics for wideband extra high frequency (EHF) phased arrays,” in Opto-electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886, 60–70 (1988).

M. H. Popek, “Electro-optic system components for phased array radar applications,” in Opto-Electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886, 32–45 (1988).

G. A. Koepf, “Optical processor for phased array antenna beam forming,” in Optical Technology for Microwave Applications, S.-K. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.477, 75–81 (1984).

L. P. Anderson, F. Boldissar, D. C. D. Chang, “Antenna beamforming using optical processing,” in Opto-Electronic Signal Processing for Phased Array Antennas, K. B. Bhasin, B. M. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886 (1988), paper 27.

I. C. Chang, S. S. Tarng, “Phased array beamforming using acousto-optic techniques,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.936, 163–167 (1988).

N. A. Riza, D. Psaltis, “An acousto-optic technique for beam scanning and beam formation in phased array radars,” in Annual Meeting Technical Digest, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper ThT5.

N. A. Riza, “Novel acousto-optic systems for spectrum analysis and phased array radar signal processing,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1989).

N. A. Riza, “Acousto-optic architectures for multidimensional phased array antenna processing,” in Optical Technology for Microwave ApplicationsV. S. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1476, (to be published).

M. L. Skolnik, Introduction to Radar Systems (McGraw-Hill, New York, 1981), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Linear phased-array antenna configuration.

Fig. 2
Fig. 2

Frequency-controlled beam steerer 1.

Fig. 3
Fig. 3

Antenna beam-scan angle versus processor control frequency behavior.

Fig. 4
Fig. 4

Frequency-controlled beam steerer 2.

Fig. 5
Fig. 5

Laboratory system.

Fig. 6
Fig. 6

Spatial-phase pattern sampled by the detectors shown with increasing control frequency (top to bottom).

Fig. 7
Fig. 7

Increasing phase difference between signals generated from the detector pair for increasing control frequency. Δψ = 0, π/4, π/2, π (top to bottom).

Fig. 8
Fig. 8

Increasing phase difference between signals generated from the detector pair for an increasing (top to bottom) interdetector spacing.

Fig. 9
Fig. 9

Plot showing signal phase change versus control frequency.

Fig. 10
Fig. 10

Plot showing antenna beam-scan angle versus control frequency.

Fig. 11
Fig. 11

Phased-array antenna transmission–receiving system.

Fig. 12
Fig. 12

Compact design of the optical processor.

Fig. 13
Fig. 13

Integrated optic version of the processor.

Tables (4)

Tables Icon

Table I System Design Values

Tables Icon

Table II Experimental Percentage Error Values

Tables Icon

Table III Designed Scan Angle Values

Tables Icon

Table IV Designed Values of the Product u x d x

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

α = 2 π ( a / λ ) sin θ ,
E n = 0 N - 1 sin ( ω t + n α ) = sin [ ω t + ( N - 1 ) α / 2 ] sin ( N α / 2 ) sin ( α / 2 ) ,
G ( θ ) = sin 2 [ N π ( a / λ ) ( sin θ - sin θ 0 ) ] N 2 sin 2 [ π ( a / λ ) ( sin ψ - sin θ 0 ) ] ,
s 1 ( t ) = a cos ω c t ,             s 2 ( t ) = a cos [ ( ω c + ω 0 ) t ] ,
E ( x , t ) = [ exp ( - j 2 x sin θ a λ x ) s ˜ 1 ( t - x M ν a ) + exp ( j 2 x sin θ a λ x ) s ˜ 2 * ( t + x M ν a ) ] rect ( x - 0.5 M X M X ) ,
s ˜ 1 = 1 2 a exp ( - j ω c ) ,             s ˜ 2 * = 1 2 a exp [ j ( ω c + ω 0 ) t ] .
I ( x , t ) E ( x , t ) 2 = a 2 2 + cos [ ( 2 ω c + ω 0 ) t - ω 0 M ν a x ] × rect ( x - 0.5 M X M X ) ,
i n ( t ) G cos [ ( 2 ω c + ω 0 ) t - n ω 0 d M ν a ] ,
i n ( t ) = G cos ( ω t - n φ ) ,
ω = 2 ω c + ω 0
φ = ω 0 d M ν a .
φ = α + 2 m π = 2 π ( a / λ ) sin θ 0 + m 2 π ,
2 π ( a / λ ) sin θ 0 = ω 0 d M v a - m 2 π ,             sin θ 0 = ( a / λ ) ( f 0 d M v a - m ) .
θ 0 = sin - 1 [ ( a / λ ) ( f 0 d M ν a - m ) ] .
f 0 = [ ( a / λ ) sin θ 0 + m ] ( M ν a d ) .
Δ f 0 f 1 ,
s ( t ) = 2 a cos ω 0 t cos ω c t = a cos ( ω c + ω 0 ) t + a cos ( ω c - ω 0 ) t .
i n ( t ) G cos ( 2 ω c t - n ω 0 d M ν a ) .
θ 0 = sin - 1 [ ( a / λ ) ( p δ f 0 d M ν a - m ) ] .
s a = φ / f 0 = 0.36 d / M ν a ( deg / kHz ) .
E s = s a - s e s a × 100 ,
I n ( x , t ) = bias + G 0 cos ( ω t - ω 0 M ν a x ) rect ( x - n d d x ) × rect ( y - 0.5 d y d y ) ,
i n ( t ) = 0 d y - 0.5 d x + n d 0.5 d x + n d G 0 cos ( ω t - ω 0 M ν a x ) d x d y + bias .
i n ( t ) = G 0 d y 2 π u x sin ( π u x d x ) cos ( ω t - n 2 π u x d ) + bias . = G 0 d x d y 2 sinc ( u x d x ) cos ( w t - n 2 π u x d ) + bias .
i n ( t ) = G 0 d x d y 2 cos ( ω t ) + bias .
i n ( t ) = G cos ( ω t - n 2 π u x d ) + bias ,
h ( t , θ ) = M M 1 X T a rect ( t T a ) exp [ j 2 π ( 2 f c + f 0 ) t ] ,
i n ( t ) = p T ( t ) G cos [ ( 2 ω c + ω 0 ) t - n φ 0 ] .
i n ( t ) = p T ( t ) G T R ( n ) cos [ ( 2 ω c + ω 0 + ω d ) t - n φ 0 ] ,
p T ( t ) = rect ( t / T ) ,             t = t - τ R ,             τ R = range delay = 2 R / c ,
ω d = Doppler frequency = - 2 R d R d t ( 2 ω c + ω 0 ) c .
i n ( t ) p T ( t ) G ( n ) cos ( ω d t ) .
i ( t ) = n = 0 N - 1 i n ( t ) = N G cos ( ω d t ) ,

Metrics