Abstract

Modern Fabry–Perot interferometers use image plane array detection to obtain the multiplex advantage. The imaging quality of these image plane detectors (IPD’s) limits their ultimate resolution and usefulness. The influence of pulse spreading on photon-counting IPD’s is investigated, first theoretically and then experimentally on real devices. The model developed in our study is in good agreement with laboratory measurements and suggests a more reliable technique to measure the blurring of the Fabry–Perot fringe caused by the IPD. Based on the model, an anticoincidence detection circuit is designed; the circuit is simple, greatly reduces the blurring, and increases the resolution of the IPD.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry–Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).
  2. T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry–Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
    [CrossRef] [PubMed]
  3. P. B. Hays, “High resolution Doppler imager (HRDI),” in Upper Atmosphere Research Satellite (UARS) Mission (Goddard Space Flight Center, Greenbelt, Md., May, 1985).
  4. W. G. Sandie, S. B. Mende, “Characteristics of a microchannel plate intensifier,” IEEE Trans. Nucl. Sci. NS-29, 212–216 (1982).
    [CrossRef]
  5. E. H. Eberhardt, “An operational model for microchannel plate devices,” IEEE Trans. Nucl. Sci. NS-28, 712–717 (1981).
    [CrossRef]
  6. D. H. Ceckowski, E. H. Eberhardt, E. Carney, “Proximity focused microchannel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-28, 677–682 (1981).
    [CrossRef]
  7. J. G. Timothy, R. L. Bybee, “One-dimensional photon-counting detector array for use at EUV and soft x-ray wavelengths,” Appl. Opt. 14, 1632–1644 (1979).
    [CrossRef]
  8. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
    [CrossRef]

1983 (1)

1982 (1)

W. G. Sandie, S. B. Mende, “Characteristics of a microchannel plate intensifier,” IEEE Trans. Nucl. Sci. NS-29, 212–216 (1982).
[CrossRef]

1981 (3)

E. H. Eberhardt, “An operational model for microchannel plate devices,” IEEE Trans. Nucl. Sci. NS-28, 712–717 (1981).
[CrossRef]

D. H. Ceckowski, E. H. Eberhardt, E. Carney, “Proximity focused microchannel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-28, 677–682 (1981).
[CrossRef]

P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry–Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).

1979 (1)

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Bybee, R. L.

Carney, E.

D. H. Ceckowski, E. H. Eberhardt, E. Carney, “Proximity focused microchannel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-28, 677–682 (1981).
[CrossRef]

Ceckowski, D. H.

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry–Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

D. H. Ceckowski, E. H. Eberhardt, E. Carney, “Proximity focused microchannel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-28, 677–682 (1981).
[CrossRef]

Eberhardt, E. H.

D. H. Ceckowski, E. H. Eberhardt, E. Carney, “Proximity focused microchannel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-28, 677–682 (1981).
[CrossRef]

E. H. Eberhardt, “An operational model for microchannel plate devices,” IEEE Trans. Nucl. Sci. NS-28, 712–717 (1981).
[CrossRef]

Hays, P. B.

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry–Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry–Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).

P. B. Hays, “High resolution Doppler imager (HRDI),” in Upper Atmosphere Research Satellite (UARS) Mission (Goddard Space Flight Center, Greenbelt, Md., May, 1985).

Kennedy, B. C.

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry–Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry–Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).

Killeen, T. L.

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry–Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry–Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Mende, S. B.

W. G. Sandie, S. B. Mende, “Characteristics of a microchannel plate intensifier,” IEEE Trans. Nucl. Sci. NS-29, 212–216 (1982).
[CrossRef]

Sandie, W. G.

W. G. Sandie, S. B. Mende, “Characteristics of a microchannel plate intensifier,” IEEE Trans. Nucl. Sci. NS-29, 212–216 (1982).
[CrossRef]

Symanow, D. A.

Timothy, J. G.

Appl. Opt. (2)

IEEE Trans. Nucl. Sci. (3)

W. G. Sandie, S. B. Mende, “Characteristics of a microchannel plate intensifier,” IEEE Trans. Nucl. Sci. NS-29, 212–216 (1982).
[CrossRef]

E. H. Eberhardt, “An operational model for microchannel plate devices,” IEEE Trans. Nucl. Sci. NS-28, 712–717 (1981).
[CrossRef]

D. H. Ceckowski, E. H. Eberhardt, E. Carney, “Proximity focused microchannel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-28, 677–682 (1981).
[CrossRef]

J. Soc. Ind. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Space Sci. Instrum. (1)

P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry–Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).

Other (1)

P. B. Hays, “High resolution Doppler imager (HRDI),” in Upper Atmosphere Research Satellite (UARS) Mission (Goddard Space Flight Center, Greenbelt, Md., May, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(a) Schematic diagram of the 32-anode multichannel IPD, (b) anode layout.

Fig. 2
Fig. 2

Schematic diagram to illustrate the IPD operation: left, planar view of the photocathode; right, planar view of the anode plane.

Fig. 3
Fig. 3

Comparison of the gain calculation by numerical integration and the approximate formula with blur-spot Δs = 200 μm: (a) solid curve, numerical integration; dotted curve, approximation; (b) error.

Fig. 4
Fig. 4

Calculated IPD count rate of each anode with blur-spot size Δs = 50 μm.

Fig. 5
Fig. 5

Calculated IPD count rate of each anode with blur-spot size Δs = 100 μm.

Fig. 6
Fig. 6

Calculated IPD count rate of each anode with blur-spot size Δs = 200 μm.

Fig. 7
Fig. 7

Schematic diagram of the test bench setup. SPRL, Space Physics Research Laboratory.

Fig. 8
Fig. 8

Count rate versus discriminator level: dotted curve, measurement; solid curve, fit by the Rayleigh distribution model; dashed curve, fit by the exponential model.

Fig. 9
Fig. 9

Measured response of IPD 48 to the ring scan without the ACD circuit and the best fit by the model: dotted curve, measurement; solid curve, model fit.

Fig. 10
Fig. 10

Blur-spot sizes of IPD 48 without the ACD circuit determined by fitting the model to the measurement: (a) blur-spot sizes Δs, (b) relative channel sensitivity.

Fig. 11
Fig. 11

Implementation of the ACD circuit with a dual-pulse synchronizer from Texas Instruments.

Fig. 12
Fig. 12

Calculated count rates of the 32-channel IPD with Δs = 200 μm and discriminator level qd = 1.5 × 105 electrons: (a) without the ACD circuit, (b) with the ACD circuit.

Fig. 13
Fig. 13

Measured response of IPD 48 to the ring scan with the ACD circuit and the best fit by the model: dotted curve, measurement; solid curve, model fit.

Fig. 14
Fig. 14

Blur-spot sizes of IPD 48 with the ACD circuit determined by fitting the model to the measurement: (a) blur-spot sizes Δs, (b) relative channel sensitivity.

Fig. 15
Fig. 15

Response of IPD 24 to the ring scan: (a) without the ACD circuit, (b) with the ACD circuit. Dotted curve, measurement; solid curve, model fit.

Fig. 16
Fig. 16

Response of IPD 17 to the ring scan: (a) without the ACD circuit, (b) with the ACD circuit. Dotted curve, measurement; solid curve, model fit.

Tables (3)

Tables Icon

Table I 32-Channel IPD Concentric-Ring Anode Element Dimensions

Tables Icon

Table II 12-Channel IPD Concentric-Ring Anode Element Dimensions

Tables Icon

Table III IPD 48 Specifications and Operation Voltages

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

F ( q ) = k ( q - q 0 Δ q ) exp [ - ( q - q 0 Δ q ) 2 ] ,
G ( r , r ) = q π Δ s 2 exp ( - r - r 2 Δ s 2 ) ,
q i = 2 q Δ s 2 f ( r , Δ s , i ) ,
f ( r , Δ s , i ) = R 1 ( i ) R 2 ( i ) I 0 ( 2 r r Δ s 2 ) exp ( - r 2 + r 2 Δ s 2 ) r d r ,
2 q Δ s 2 f ( r , Δ s , i ) q d
q q d Δ s 2 2 f ( r , Δ s , i ) .
P i ( r , Δ s , q 0 , q d ) = q d Δ s 2 2 f ( r , Δ s , i ) k ( q - q 0 Δ q ) exp [ - ( q - q 0 Δ q ) 2 ] d q = exp [ ( q 0 Δ q ) 2 ] exp [ - ( q 1 - q 0 Δ q ) 2 ] ,
q i = q d gain ( r , Δ s , i )
gain ( r , Δ s , i ) = 2 Δ s 2 f ( r , Δ s , i )
I p ( r ) = I 0 ( 1 - R ) 2 1 - 2 R cos [ 2 π ( p - p 0 Δ p fsr - M 0 r 2 2 f 0 2 ) ] + R 2 ,
N i = N dark + cathode I p ( r ) P i ( r , Δ s , q 0 , q d ) d s = N dark + 2 π 0 I max I p ( r ) P i ( r , Δ s , q 0 , q d ) r d r ,
gain ( r , Δ s , i ) = 1 2 { erf [ R 2 ( i ) - r Δ s ] - erf [ R 1 ( i ) - r Δ s ] } .
gain ( r , Δ s , i ) = 1 2 { erf [ R 2 ( 1 ) - r Δ s ] - erf [ - R 2 ( 1 ) - r Δ s ] }             i = 1 1 2 { erf [ R 2 ( i ) - r Δ s ] - erf [ - R 1 ( i ) - r Δ s ] }             i 2
f ( q ) = k ( q - q 0 Δ q ) exp [ - ( q - q 0 Δ q ) 2 ]
C ( q d ) = q d f ( q ) d q = C 0 exp [ - ( q d - q 0 Δ q ) 2 ] ,
N i c = N dark + 2 π r 1 r 2 I p ( r ) P i ( r , Δ s , q 0 , q d ) r d r ,
r 1 = { 0 i = 1 R 2 ( i - 1 ) + R 1 ( i ) 2 i 2 , r 2 = { r max i = i max R 2 ( i ) + R 1 ( i + 1 ) 2 i < i max .

Metrics