Abstract

Dual modulation laser line locking, useful for long-term trace species monitoring, achieves wavelength stability <0.1 ppm and rejects baseline drift in the measured absorbance 3000-fold.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency Modulation Excitation Spectroscopy,” Opt. Commun. 41, 369–373 (1982).
    [CrossRef]
  2. J. A. Silver, “Frequency Modulation Spectroscopy for Trace Species Detection: Theory and Comparison Among Experimental Methods,” Appl. Opt. (to be published).
  3. G. V. H. Wilson, “Modulation Broadening of NMR and ESR Line Shapes,” J. Appl. Phys. 34, 3267–3285 (1963).
    [CrossRef]
  4. R. Arndt, “Analytical Line Shapes for Lorentzian Signals Broadened by Modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
    [CrossRef]
  5. T. M. Shay, Y. C. Chung, “400 Hz Frequency Stability of a GaAlAs Laser Frequency Locked to the Rb(D2) Line,” Opt. Eng. 29, 681–683 (1990).
    [CrossRef]
  6. D. S. Bomse, A. C. Stanton, J. A. Silver, D. B. Oh, unpublished results.
  7. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3←0 Band Using a Near-IR InGaAsP Diode Laser,” Appl. Opt. 27, 5009–5015 (1988).
    [CrossRef] [PubMed]
  8. J. A. Silver, D. S. Bomse, A. C. Stanton, “Diode Laser Measurements of Trace Concentrations of Ammonia in an Entrained-Flow Coal Reactor,” Appl. Opt. 30, 1505–1511 (1991).
    [CrossRef] [PubMed]
  9. G. Guelachvili, K. N. Rao, Handbook of Infrared Standards with Spectral Maps and Transitions between 3 and 2600 μm (Academic, Orlando, Fla., 1986), pp. 318–319.
  10. Calculated 2f line shapes for Doppler-broadened absorbances using the treatment presented in Ref. 3 show that, at the optimum modulation amplitude, the 2f line shape nearly matches the Gaussian profile for small displacements from line center.
  11. M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
    [CrossRef]
  12. K. Shimoda, A. Javan, “Stabilization of the He–Ne maser on the atomic line center,” J. Appl. Phys. 36, 718 (1965).
    [CrossRef]

1991

1990

T. M. Shay, Y. C. Chung, “400 Hz Frequency Stability of a GaAlAs Laser Frequency Locked to the Rb(D2) Line,” Opt. Eng. 29, 681–683 (1990).
[CrossRef]

1988

1987

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

1982

W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency Modulation Excitation Spectroscopy,” Opt. Commun. 41, 369–373 (1982).
[CrossRef]

1965

K. Shimoda, A. Javan, “Stabilization of the He–Ne maser on the atomic line center,” J. Appl. Phys. 36, 718 (1965).
[CrossRef]

R. Arndt, “Analytical Line Shapes for Lorentzian Signals Broadened by Modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

1963

G. V. H. Wilson, “Modulation Broadening of NMR and ESR Line Shapes,” J. Appl. Phys. 34, 3267–3285 (1963).
[CrossRef]

Arndt, R.

R. Arndt, “Analytical Line Shapes for Lorentzian Signals Broadened by Modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Bjorklund, G. C.

W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency Modulation Excitation Spectroscopy,” Opt. Commun. 41, 369–373 (1982).
[CrossRef]

Bomse, D. S.

Chung, Y. C.

T. M. Shay, Y. C. Chung, “400 Hz Frequency Stability of a GaAlAs Laser Frequency Locked to the Rb(D2) Line,” Opt. Eng. 29, 681–683 (1990).
[CrossRef]

Guelachvili, G.

G. Guelachvili, K. N. Rao, Handbook of Infrared Standards with Spectral Maps and Transitions between 3 and 2600 μm (Academic, Orlando, Fla., 1986), pp. 318–319.

Javan, A.

K. Shimoda, A. Javan, “Stabilization of the He–Ne maser on the atomic line center,” J. Appl. Phys. 36, 718 (1965).
[CrossRef]

Kroll, M.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Lenth, W.

W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency Modulation Excitation Spectroscopy,” Opt. Commun. 41, 369–373 (1982).
[CrossRef]

McClintock, J. A.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Oh, D. B.

D. S. Bomse, A. C. Stanton, J. A. Silver, D. B. Oh, unpublished results.

Ollinger, O.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Ortiz, C.

W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency Modulation Excitation Spectroscopy,” Opt. Commun. 41, 369–373 (1982).
[CrossRef]

Rao, K. N.

G. Guelachvili, K. N. Rao, Handbook of Infrared Standards with Spectral Maps and Transitions between 3 and 2600 μm (Academic, Orlando, Fla., 1986), pp. 318–319.

Shay, T. M.

T. M. Shay, Y. C. Chung, “400 Hz Frequency Stability of a GaAlAs Laser Frequency Locked to the Rb(D2) Line,” Opt. Eng. 29, 681–683 (1990).
[CrossRef]

Shimoda, K.

K. Shimoda, A. Javan, “Stabilization of the He–Ne maser on the atomic line center,” J. Appl. Phys. 36, 718 (1965).
[CrossRef]

Silver, J. A.

J. A. Silver, D. S. Bomse, A. C. Stanton, “Diode Laser Measurements of Trace Concentrations of Ammonia in an Entrained-Flow Coal Reactor,” Appl. Opt. 30, 1505–1511 (1991).
[CrossRef] [PubMed]

A. C. Stanton, J. A. Silver, “Measurements in the HCl 3←0 Band Using a Near-IR InGaAsP Diode Laser,” Appl. Opt. 27, 5009–5015 (1988).
[CrossRef] [PubMed]

J. A. Silver, “Frequency Modulation Spectroscopy for Trace Species Detection: Theory and Comparison Among Experimental Methods,” Appl. Opt. (to be published).

D. S. Bomse, A. C. Stanton, J. A. Silver, D. B. Oh, unpublished results.

Stanton, A. C.

Wilson, G. V. H.

G. V. H. Wilson, “Modulation Broadening of NMR and ESR Line Shapes,” J. Appl. Phys. 34, 3267–3285 (1963).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

J. Appl. Phys.

K. Shimoda, A. Javan, “Stabilization of the He–Ne maser on the atomic line center,” J. Appl. Phys. 36, 718 (1965).
[CrossRef]

R. Arndt, “Analytical Line Shapes for Lorentzian Signals Broadened by Modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

J. Appl. Phys.

G. V. H. Wilson, “Modulation Broadening of NMR and ESR Line Shapes,” J. Appl. Phys. 34, 3267–3285 (1963).
[CrossRef]

Opt. Commun.

W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency Modulation Excitation Spectroscopy,” Opt. Commun. 41, 369–373 (1982).
[CrossRef]

Opt. Eng.

T. M. Shay, Y. C. Chung, “400 Hz Frequency Stability of a GaAlAs Laser Frequency Locked to the Rb(D2) Line,” Opt. Eng. 29, 681–683 (1990).
[CrossRef]

Other

D. S. Bomse, A. C. Stanton, J. A. Silver, D. B. Oh, unpublished results.

J. A. Silver, “Frequency Modulation Spectroscopy for Trace Species Detection: Theory and Comparison Among Experimental Methods,” Appl. Opt. (to be published).

G. Guelachvili, K. N. Rao, Handbook of Infrared Standards with Spectral Maps and Transitions between 3 and 2600 μm (Academic, Orlando, Fla., 1986), pp. 318–319.

Calculated 2f line shapes for Doppler-broadened absorbances using the treatment presented in Ref. 3 show that, at the optimum modulation amplitude, the 2f line shape nearly matches the Gaussian profile for small displacements from line center.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectral line shapes observed using conventional and dual-modulation schemes. Spectrum (a) is the 1fΩ trace obtained with 5-MHz modulation while (b) is the 2fΩ spectrum and indicates the amplitude in wavelength of the dither modulation at ω = 500 Hz. The right-hand scans show the effect of dual modulation with second harmonic demodulation, relative tow, of the 1f (c) and 2ƒ (d) signals.

Fig. 2
Fig. 2

Simplified block diagram of the signal processing electronics. The detector output is first amplified using a 4-kΩ transimpedance preamplifier, then a 50–50 splitter divides the signal evenly into a reference (1fΩ) and signal (2fΩ) leg. Each leg undergoes 40-dB amplification before demodulation using the mixers. Local oscillator wave forms for the mixers are derived from the 5-MHz sine wave used to modulate the laser. For conventional line locking, when dithering is not used, the 1fΩ signal is used directly for wavelength stabilization. Dual-mode modulation uses the two lock-in amplifiers shown. For clarity, we have omitted several components from the figure including the 1fΩ and 2fΩ phase shifters, bandpass filters, couplers, attenuators, and an isolation transformer.

Fig. 3
Fig. 3

Experimental results showing 2fΩ and 2f ω signal intensities, which are used as a measure of wavelength stability. Amplitudes are expressed as a percentage of the unperturbed 2fΩ signal.

Metrics