Abstract

Normal incidence thin film interference mirrors and filters have been designed to image the O ii 834-Å airglow. It is shown that MgF2 is a useful spacer material for this wavelength region. The mirrors consist of thin layers of MgF2 in combination with other materials that are chosen to reflect efficiently in a narrow band centered at 834 Å. Peak reflectance of 60% can be obtained with a passband 200 Å wide. Al/MgF2/Si and Al/MgF2/SiC interference coatings have been designed to reflect 834 Å and to absorbe the intense H i 1216 Å airglow. An In/MgF2/In interference filter is designed to transmit 834 Å and attenuate 1216 Å radiation. Interference photocathode coatings for rejecting 1216 Å radiation are also discussed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Gentieu, P. D. Feldman, R. R. Meier, “Spectroscopy of the Extreme Ultraviolet Dayglow at 6.5 Å Resolution: Atomic and Ionic Emissions Between 530 and 1240 Å,” Geophys. Res. Lett. 6, 325–328 (1979).
    [CrossRef]
  2. E. P. Gentieu, P. D. Feldman, R. W. Eastes, A. B. Christensen, “EUV Airglow During Active Solar Conditions 2. Emission Between 530 and 930 Å,” J. Geophys. Res. 89, 11053–11058 (1984).
    [CrossRef]
  3. M. D. Morrison, C. W. Bowers, P. D. Feldman, R. R. Meier, “The EUV Dayglow at High Spectral Resolution,” J. Geophys. Res. 95, 4113–4127 (1990).
    [CrossRef]
  4. S. R. Bowyer, R. Kimble, F. Paresce, M. Lampton, G. Penegor, “Continuous-Readout Extreme-Ultraviolet Airglow Spectrometer,” Appl. Opt. 20, 477–486 (1981).
    [CrossRef] [PubMed]
  5. S. F. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Day Airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
    [CrossRef]
  6. F. Paresce, S. Chakrabarti, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Spectrum of Dayside and Nightside Aurorae: 800–1400 Å,” J. Geophys. Res. 88, 4905–4910 (1983).
    [CrossRef]
  7. S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) Nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
    [CrossRef]
  8. P. D. Feldman, D. E. Anderson, R. R. Meier, E. P. Gentieu, “The Ultraviolet Dayglow 4. The Spectrum and Excitation of Singly Ionized Oxygen,” J. Geophys. Res. 86, 3583–3588 (1981).
    [CrossRef]
  9. S. Kumar, S. Chakrabarti, F. Paresce, S. Bowyer, “The O+ 834 Å Dayglow: Satellite Observations and Intepretation with a Radiation Transfer Model,” J. Geophys. Res. 88, 9271–9279 (1983).
    [CrossRef]
  10. R. P. McCoy, D. E. Anderson, S. Chakrabarti, “F2 Region Ion Densities from Analysis of O+ 834 Å Airglow: a Parametric Study and Comparisons with Satellite Data,” J. Geophys. Res. 90, 12257–12264 (1985).
    [CrossRef]
  11. D. D. Cleary, R. R. Meier, E. P. Gentieu, P. D. Feldman, A. B. Christensen, “An Analysis of the Effects of N2 Absorption on the O+ 834 Å Emission from Rocket Observations,” J. Geophys. Res. 94, 17281–17285 (1989).
    [CrossRef]
  12. S. Chakrabarti, R. Link, G. R. Gladstone, “Ionospheric and Atmospheric Remote Sensing Using Passive Sensors,” Optoelectronic Technologies for Remote Sensing from Space, Proc. Soc. Photo-Opt. Instrum. Eng.868 (1987).
  13. Y. T. Chiu, R. M. Robinson, G. R. Swenson, “Imaging the Outflow of Ionospheric Ions into the Magnetosphere,” Nature 322, 441–444 (1986).
    [CrossRef]
  14. D. W. Swift, R. W. Smith, S. I. Akasofu, “Imaging the Earth’s Magnetosphere,” Planet. Space Sci. 37, 379–384 (1989).
    [CrossRef]
  15. W. R. Hunter, “Layered Synthetic Microstructures and Their Application in the VUV,” Technologies for Optoelectronics, Proc. Soc. Photo-Opt. Instrum. Eng.869 (1987).
  16. M. W. Williams, R. A. MacRae, E. T. Arakawa, “Optical Properties of Magnetism Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38, 1701–1705 (1967).
    [CrossRef]
  17. T. T. Cole, F. Oppenheimer, “Polarization by Reflection and Some Optical Constants in the Extreme Ultraviolet,” Appl. Opt. 1, 709–710 (1962).
    [CrossRef]
  18. W. C. Walker, O. P. Rustgi, G. L. Weissler, “Optical and Photoelectric Properties of Thin Metallic Films in the Vacuum Ultraviolet,” J. Opt. Soc. Am. 49, 471–475 (1959).
    [CrossRef]
  19. W. R. Hunter, “On the Optical Constants of Metals at Wavelengths Shorter than Their Critical Wavelengths,” J. Phys. (Paris) 25, 154–160 (1964).
  20. F. R. Powell, P. W. Vedder, J. Lindblom, S. F. Powell, “Thin Film Filter Performance for Extreme Ultraviolet and X-Ray Applications,” Opt. Eng. 29, 614–624 (1990).
    [CrossRef]
  21. E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-Consistency and Sum-Rule Tests in the Kramers-Kronig Analysis of Optical Data: Application to Aluminum,” Phys. Rev. B 22, 1612–1624 (1980).
    [CrossRef]
  22. H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43, 2835–2839 (1972).
    [CrossRef]
  23. V. Rehn, J. L. Stanford, V. O. Jones, in Proceedings, Thirteenth International Conference on the Physics of Semiconductors, Rome (1976).
  24. G. Leveque, D. A. Lynch, private communication (1982) quoted by E. D. Palik in Handbook of Optical Constants of Solids (Academic, New York, 1985).
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  26. W. R. Hunter, “A Review of Vacuum Ultraviolet Optics,” Optical Coatings—Applications and Utilization II, Proc. Soc. Photo-Opt. Instrum. Eng.140 (1978).
  27. W. R. Hunter, J. F. Osantowski, G. Hass, “Reflectance of Aluminum Overcoated with MgF2 and LiF in the Wavelength Region from 1600 Å to 300 Å at Various Angles of Incidence,” Appl. Opt. 10, 540–544 (1971).
    [CrossRef] [PubMed]
  28. J. B. Heaney, H. Herzig, J. F. Osantowski, “Auger Spectroscopic Examination of MgF2-Coated Al Mirrors Before and After UV Irradiation,” Appl. Opt. 16, 1886–1889 (1977).
    [CrossRef] [PubMed]
  29. R. F. Potter, “Basic Parameters for Measuring Optical Properties,” in Handbook of Optical Constants, E. D. Palik, Ed. (Academic, New York, 1985).
  30. L. N. Hadley, D. M. Dennison, “Reflection and Transmission Interference Filters Part I. Theory,” J. Opt. Soc. Am. 37, 451–465 (1947).
    [CrossRef] [PubMed]
  31. L. N. Hadley, D. M. Dennison, “Reflection and Transmission Interference Filters Part II. Experimental, Comparison with Theory, Results,” J. Opt. Soc. Am. 38, 483–496 (1948).
    [CrossRef] [PubMed]
  32. G. Hass, H. H. Schroeder, A. F. Turner, “Mirror Coatings for Low Visible and High Infrared Reflectance,” J. Opt. Soc. Am. 46, 31–35 (1956).
    [CrossRef]
  33. G. Hass, W. R. Hunter, “The Use of Evaporated Films for Space Applications,” Phys. Thin Films 10, 71–86 (1978).
  34. J. Edelstein, “Reflection/Suppression Coatings for 900–1200 Å Radiation,” EUV Optics for Astronomy and Microscopy, Proc. Soc. Photo-Opt. Instrum. Eng.1160 (1989).
  35. R. B. Cairns, J. A. R. Samson, “Metal Photocathodes as Secondary Standards for Absolute Intensity Measurements in the Vacuum Ultraviolet,” J. Opt. Soc. Am. 56, 1568–1573 (1966).
    [CrossRef]
  36. M. C. Johnson, “A Secondary Standard Vacuum Ultraviolet Detector,” Rev. Sci. Instrum. 40, 311–315 (1969).
    [CrossRef]
  37. F. Paresce, “Quantum Efficiency of a Channel Electron Multiplier in the Far Ultraviolet,” Appl. Opt. 14, 2823–2824 (1975).
    [CrossRef] [PubMed]
  38. D. Kossel, K. Deutscher, K. Hirschberg, “Interference Photocathode,” in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), Vol. 5.
  39. R. A. M. Keski-Kuhu, J. F. Osantowski, H. Herzig, J. S. Gum, A. R. Toft, “Normal Incidence Reflectance of Ion Beam Deposited SiC Films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
    [CrossRef]
  40. S. Chakrabarti, S. Bowyer, F. Paresce, J. B. Franke, A. B. Christensen, “Long Term Variability of Transmission of Thin In-Sn and Sn-C Films for EUV Instrumentation,” Appl. Opt. 21, 3417–3418 (1982).
    [CrossRef] [PubMed]
  41. M. Hurwitz, S. Labov, S. Chakrabarti, “Very Long-Term Stability of Thin Indium/Tin Film Transmission,” Appl. Opt. 24, 1735–1736 (1985).
    [CrossRef] [PubMed]
  42. L. B. Lapson, J. G. Timothy, “Use of MgF2 and LiF Photocathodes in the Extreme Ultraviolet,” Appl. Opt. 12, 388–393 (1973).
    [CrossRef] [PubMed]
  43. L. B. Lapson, J. G. Timothy, “Channel Electron Multipliers: Detection Efficiencies with Opaque MgF2 Photocathodes at XUV Wavelengths,” Appl. Opt. 15, 1218–1221 (1976).
    [CrossRef] [PubMed]

1990 (2)

M. D. Morrison, C. W. Bowers, P. D. Feldman, R. R. Meier, “The EUV Dayglow at High Spectral Resolution,” J. Geophys. Res. 95, 4113–4127 (1990).
[CrossRef]

F. R. Powell, P. W. Vedder, J. Lindblom, S. F. Powell, “Thin Film Filter Performance for Extreme Ultraviolet and X-Ray Applications,” Opt. Eng. 29, 614–624 (1990).
[CrossRef]

1989 (3)

J. Edelstein, “Reflection/Suppression Coatings for 900–1200 Å Radiation,” EUV Optics for Astronomy and Microscopy, Proc. Soc. Photo-Opt. Instrum. Eng.1160 (1989).

D. D. Cleary, R. R. Meier, E. P. Gentieu, P. D. Feldman, A. B. Christensen, “An Analysis of the Effects of N2 Absorption on the O+ 834 Å Emission from Rocket Observations,” J. Geophys. Res. 94, 17281–17285 (1989).
[CrossRef]

D. W. Swift, R. W. Smith, S. I. Akasofu, “Imaging the Earth’s Magnetosphere,” Planet. Space Sci. 37, 379–384 (1989).
[CrossRef]

1988 (1)

1987 (2)

W. R. Hunter, “Layered Synthetic Microstructures and Their Application in the VUV,” Technologies for Optoelectronics, Proc. Soc. Photo-Opt. Instrum. Eng.869 (1987).

S. Chakrabarti, R. Link, G. R. Gladstone, “Ionospheric and Atmospheric Remote Sensing Using Passive Sensors,” Optoelectronic Technologies for Remote Sensing from Space, Proc. Soc. Photo-Opt. Instrum. Eng.868 (1987).

1986 (1)

Y. T. Chiu, R. M. Robinson, G. R. Swenson, “Imaging the Outflow of Ionospheric Ions into the Magnetosphere,” Nature 322, 441–444 (1986).
[CrossRef]

1985 (2)

R. P. McCoy, D. E. Anderson, S. Chakrabarti, “F2 Region Ion Densities from Analysis of O+ 834 Å Airglow: a Parametric Study and Comparisons with Satellite Data,” J. Geophys. Res. 90, 12257–12264 (1985).
[CrossRef]

M. Hurwitz, S. Labov, S. Chakrabarti, “Very Long-Term Stability of Thin Indium/Tin Film Transmission,” Appl. Opt. 24, 1735–1736 (1985).
[CrossRef] [PubMed]

1984 (2)

E. P. Gentieu, P. D. Feldman, R. W. Eastes, A. B. Christensen, “EUV Airglow During Active Solar Conditions 2. Emission Between 530 and 930 Å,” J. Geophys. Res. 89, 11053–11058 (1984).
[CrossRef]

S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) Nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
[CrossRef]

1983 (3)

S. F. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Day Airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

F. Paresce, S. Chakrabarti, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Spectrum of Dayside and Nightside Aurorae: 800–1400 Å,” J. Geophys. Res. 88, 4905–4910 (1983).
[CrossRef]

S. Kumar, S. Chakrabarti, F. Paresce, S. Bowyer, “The O+ 834 Å Dayglow: Satellite Observations and Intepretation with a Radiation Transfer Model,” J. Geophys. Res. 88, 9271–9279 (1983).
[CrossRef]

1982 (1)

1981 (2)

P. D. Feldman, D. E. Anderson, R. R. Meier, E. P. Gentieu, “The Ultraviolet Dayglow 4. The Spectrum and Excitation of Singly Ionized Oxygen,” J. Geophys. Res. 86, 3583–3588 (1981).
[CrossRef]

S. R. Bowyer, R. Kimble, F. Paresce, M. Lampton, G. Penegor, “Continuous-Readout Extreme-Ultraviolet Airglow Spectrometer,” Appl. Opt. 20, 477–486 (1981).
[CrossRef] [PubMed]

1980 (1)

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-Consistency and Sum-Rule Tests in the Kramers-Kronig Analysis of Optical Data: Application to Aluminum,” Phys. Rev. B 22, 1612–1624 (1980).
[CrossRef]

1979 (1)

E. P. Gentieu, P. D. Feldman, R. R. Meier, “Spectroscopy of the Extreme Ultraviolet Dayglow at 6.5 Å Resolution: Atomic and Ionic Emissions Between 530 and 1240 Å,” Geophys. Res. Lett. 6, 325–328 (1979).
[CrossRef]

1978 (2)

W. R. Hunter, “A Review of Vacuum Ultraviolet Optics,” Optical Coatings—Applications and Utilization II, Proc. Soc. Photo-Opt. Instrum. Eng.140 (1978).

G. Hass, W. R. Hunter, “The Use of Evaporated Films for Space Applications,” Phys. Thin Films 10, 71–86 (1978).

1977 (1)

1976 (1)

1975 (1)

1973 (1)

1972 (1)

H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43, 2835–2839 (1972).
[CrossRef]

1971 (1)

1969 (1)

M. C. Johnson, “A Secondary Standard Vacuum Ultraviolet Detector,” Rev. Sci. Instrum. 40, 311–315 (1969).
[CrossRef]

1967 (1)

M. W. Williams, R. A. MacRae, E. T. Arakawa, “Optical Properties of Magnetism Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38, 1701–1705 (1967).
[CrossRef]

1966 (1)

1964 (1)

W. R. Hunter, “On the Optical Constants of Metals at Wavelengths Shorter than Their Critical Wavelengths,” J. Phys. (Paris) 25, 154–160 (1964).

1962 (1)

1959 (1)

1956 (1)

1948 (1)

1947 (1)

Akasofu, S. I.

D. W. Swift, R. W. Smith, S. I. Akasofu, “Imaging the Earth’s Magnetosphere,” Planet. Space Sci. 37, 379–384 (1989).
[CrossRef]

Anderson, D. E.

R. P. McCoy, D. E. Anderson, S. Chakrabarti, “F2 Region Ion Densities from Analysis of O+ 834 Å Airglow: a Parametric Study and Comparisons with Satellite Data,” J. Geophys. Res. 90, 12257–12264 (1985).
[CrossRef]

P. D. Feldman, D. E. Anderson, R. R. Meier, E. P. Gentieu, “The Ultraviolet Dayglow 4. The Spectrum and Excitation of Singly Ionized Oxygen,” J. Geophys. Res. 86, 3583–3588 (1981).
[CrossRef]

Arakawa, E. T.

M. W. Williams, R. A. MacRae, E. T. Arakawa, “Optical Properties of Magnetism Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38, 1701–1705 (1967).
[CrossRef]

Bowers, C. W.

M. D. Morrison, C. W. Bowers, P. D. Feldman, R. R. Meier, “The EUV Dayglow at High Spectral Resolution,” J. Geophys. Res. 95, 4113–4127 (1990).
[CrossRef]

Bowyer, S.

S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) Nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
[CrossRef]

S. F. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Day Airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

F. Paresce, S. Chakrabarti, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Spectrum of Dayside and Nightside Aurorae: 800–1400 Å,” J. Geophys. Res. 88, 4905–4910 (1983).
[CrossRef]

S. Kumar, S. Chakrabarti, F. Paresce, S. Bowyer, “The O+ 834 Å Dayglow: Satellite Observations and Intepretation with a Radiation Transfer Model,” J. Geophys. Res. 88, 9271–9279 (1983).
[CrossRef]

S. Chakrabarti, S. Bowyer, F. Paresce, J. B. Franke, A. B. Christensen, “Long Term Variability of Transmission of Thin In-Sn and Sn-C Films for EUV Instrumentation,” Appl. Opt. 21, 3417–3418 (1982).
[CrossRef] [PubMed]

Bowyer, S. R.

Cairns, R. B.

Chakrabarti, S.

S. Chakrabarti, R. Link, G. R. Gladstone, “Ionospheric and Atmospheric Remote Sensing Using Passive Sensors,” Optoelectronic Technologies for Remote Sensing from Space, Proc. Soc. Photo-Opt. Instrum. Eng.868 (1987).

R. P. McCoy, D. E. Anderson, S. Chakrabarti, “F2 Region Ion Densities from Analysis of O+ 834 Å Airglow: a Parametric Study and Comparisons with Satellite Data,” J. Geophys. Res. 90, 12257–12264 (1985).
[CrossRef]

M. Hurwitz, S. Labov, S. Chakrabarti, “Very Long-Term Stability of Thin Indium/Tin Film Transmission,” Appl. Opt. 24, 1735–1736 (1985).
[CrossRef] [PubMed]

S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) Nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
[CrossRef]

S. Kumar, S. Chakrabarti, F. Paresce, S. Bowyer, “The O+ 834 Å Dayglow: Satellite Observations and Intepretation with a Radiation Transfer Model,” J. Geophys. Res. 88, 9271–9279 (1983).
[CrossRef]

F. Paresce, S. Chakrabarti, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Spectrum of Dayside and Nightside Aurorae: 800–1400 Å,” J. Geophys. Res. 88, 4905–4910 (1983).
[CrossRef]

S. Chakrabarti, S. Bowyer, F. Paresce, J. B. Franke, A. B. Christensen, “Long Term Variability of Transmission of Thin In-Sn and Sn-C Films for EUV Instrumentation,” Appl. Opt. 21, 3417–3418 (1982).
[CrossRef] [PubMed]

Chakrabarti, S. F.

S. F. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Day Airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

Chiu, Y. T.

Y. T. Chiu, R. M. Robinson, G. R. Swenson, “Imaging the Outflow of Ionospheric Ions into the Magnetosphere,” Nature 322, 441–444 (1986).
[CrossRef]

Christensen, A. B.

D. D. Cleary, R. R. Meier, E. P. Gentieu, P. D. Feldman, A. B. Christensen, “An Analysis of the Effects of N2 Absorption on the O+ 834 Å Emission from Rocket Observations,” J. Geophys. Res. 94, 17281–17285 (1989).
[CrossRef]

E. P. Gentieu, P. D. Feldman, R. W. Eastes, A. B. Christensen, “EUV Airglow During Active Solar Conditions 2. Emission Between 530 and 930 Å,” J. Geophys. Res. 89, 11053–11058 (1984).
[CrossRef]

S. Chakrabarti, S. Bowyer, F. Paresce, J. B. Franke, A. B. Christensen, “Long Term Variability of Transmission of Thin In-Sn and Sn-C Films for EUV Instrumentation,” Appl. Opt. 21, 3417–3418 (1982).
[CrossRef] [PubMed]

Cleary, D. D.

D. D. Cleary, R. R. Meier, E. P. Gentieu, P. D. Feldman, A. B. Christensen, “An Analysis of the Effects of N2 Absorption on the O+ 834 Å Emission from Rocket Observations,” J. Geophys. Res. 94, 17281–17285 (1989).
[CrossRef]

Cole, T. T.

Dennison, D. M.

Deutscher, K.

D. Kossel, K. Deutscher, K. Hirschberg, “Interference Photocathode,” in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), Vol. 5.

Eastes, R. W.

E. P. Gentieu, P. D. Feldman, R. W. Eastes, A. B. Christensen, “EUV Airglow During Active Solar Conditions 2. Emission Between 530 and 930 Å,” J. Geophys. Res. 89, 11053–11058 (1984).
[CrossRef]

Edelstein, J.

J. Edelstein, “Reflection/Suppression Coatings for 900–1200 Å Radiation,” EUV Optics for Astronomy and Microscopy, Proc. Soc. Photo-Opt. Instrum. Eng.1160 (1989).

Feldman, P. D.

M. D. Morrison, C. W. Bowers, P. D. Feldman, R. R. Meier, “The EUV Dayglow at High Spectral Resolution,” J. Geophys. Res. 95, 4113–4127 (1990).
[CrossRef]

D. D. Cleary, R. R. Meier, E. P. Gentieu, P. D. Feldman, A. B. Christensen, “An Analysis of the Effects of N2 Absorption on the O+ 834 Å Emission from Rocket Observations,” J. Geophys. Res. 94, 17281–17285 (1989).
[CrossRef]

E. P. Gentieu, P. D. Feldman, R. W. Eastes, A. B. Christensen, “EUV Airglow During Active Solar Conditions 2. Emission Between 530 and 930 Å,” J. Geophys. Res. 89, 11053–11058 (1984).
[CrossRef]

P. D. Feldman, D. E. Anderson, R. R. Meier, E. P. Gentieu, “The Ultraviolet Dayglow 4. The Spectrum and Excitation of Singly Ionized Oxygen,” J. Geophys. Res. 86, 3583–3588 (1981).
[CrossRef]

E. P. Gentieu, P. D. Feldman, R. R. Meier, “Spectroscopy of the Extreme Ultraviolet Dayglow at 6.5 Å Resolution: Atomic and Ionic Emissions Between 530 and 1240 Å,” Geophys. Res. Lett. 6, 325–328 (1979).
[CrossRef]

Franke, J. B.

Gentieu, E. P.

D. D. Cleary, R. R. Meier, E. P. Gentieu, P. D. Feldman, A. B. Christensen, “An Analysis of the Effects of N2 Absorption on the O+ 834 Å Emission from Rocket Observations,” J. Geophys. Res. 94, 17281–17285 (1989).
[CrossRef]

E. P. Gentieu, P. D. Feldman, R. W. Eastes, A. B. Christensen, “EUV Airglow During Active Solar Conditions 2. Emission Between 530 and 930 Å,” J. Geophys. Res. 89, 11053–11058 (1984).
[CrossRef]

P. D. Feldman, D. E. Anderson, R. R. Meier, E. P. Gentieu, “The Ultraviolet Dayglow 4. The Spectrum and Excitation of Singly Ionized Oxygen,” J. Geophys. Res. 86, 3583–3588 (1981).
[CrossRef]

E. P. Gentieu, P. D. Feldman, R. R. Meier, “Spectroscopy of the Extreme Ultraviolet Dayglow at 6.5 Å Resolution: Atomic and Ionic Emissions Between 530 and 1240 Å,” Geophys. Res. Lett. 6, 325–328 (1979).
[CrossRef]

Gladstone, G. R.

S. Chakrabarti, R. Link, G. R. Gladstone, “Ionospheric and Atmospheric Remote Sensing Using Passive Sensors,” Optoelectronic Technologies for Remote Sensing from Space, Proc. Soc. Photo-Opt. Instrum. Eng.868 (1987).

Gum, J. S.

Hadley, L. N.

Hass, G.

Heaney, J. B.

Herzig, H.

Hirschberg, K.

D. Kossel, K. Deutscher, K. Hirschberg, “Interference Photocathode,” in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), Vol. 5.

Hunter, W. R.

W. R. Hunter, “Layered Synthetic Microstructures and Their Application in the VUV,” Technologies for Optoelectronics, Proc. Soc. Photo-Opt. Instrum. Eng.869 (1987).

G. Hass, W. R. Hunter, “The Use of Evaporated Films for Space Applications,” Phys. Thin Films 10, 71–86 (1978).

W. R. Hunter, “A Review of Vacuum Ultraviolet Optics,” Optical Coatings—Applications and Utilization II, Proc. Soc. Photo-Opt. Instrum. Eng.140 (1978).

W. R. Hunter, J. F. Osantowski, G. Hass, “Reflectance of Aluminum Overcoated with MgF2 and LiF in the Wavelength Region from 1600 Å to 300 Å at Various Angles of Incidence,” Appl. Opt. 10, 540–544 (1971).
[CrossRef] [PubMed]

W. R. Hunter, “On the Optical Constants of Metals at Wavelengths Shorter than Their Critical Wavelengths,” J. Phys. (Paris) 25, 154–160 (1964).

Hurwitz, M.

Inokuti, M.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-Consistency and Sum-Rule Tests in the Kramers-Kronig Analysis of Optical Data: Application to Aluminum,” Phys. Rev. B 22, 1612–1624 (1980).
[CrossRef]

Johnson, M. C.

M. C. Johnson, “A Secondary Standard Vacuum Ultraviolet Detector,” Rev. Sci. Instrum. 40, 311–315 (1969).
[CrossRef]

Jones, V. O.

V. Rehn, J. L. Stanford, V. O. Jones, in Proceedings, Thirteenth International Conference on the Physics of Semiconductors, Rome (1976).

Keski-Kuhu, R. A. M.

Kimble, R.

S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) Nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
[CrossRef]

F. Paresce, S. Chakrabarti, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Spectrum of Dayside and Nightside Aurorae: 800–1400 Å,” J. Geophys. Res. 88, 4905–4910 (1983).
[CrossRef]

S. F. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Day Airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

S. R. Bowyer, R. Kimble, F. Paresce, M. Lampton, G. Penegor, “Continuous-Readout Extreme-Ultraviolet Airglow Spectrometer,” Appl. Opt. 20, 477–486 (1981).
[CrossRef] [PubMed]

Kossel, D.

D. Kossel, K. Deutscher, K. Hirschberg, “Interference Photocathode,” in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), Vol. 5.

Kumar, S.

S. Kumar, S. Chakrabarti, F. Paresce, S. Bowyer, “The O+ 834 Å Dayglow: Satellite Observations and Intepretation with a Radiation Transfer Model,” J. Geophys. Res. 88, 9271–9279 (1983).
[CrossRef]

Labov, S.

Lampton, M.

Lapson, L. B.

Leveque, G.

G. Leveque, D. A. Lynch, private communication (1982) quoted by E. D. Palik in Handbook of Optical Constants of Solids (Academic, New York, 1985).

Lindblom, J.

F. R. Powell, P. W. Vedder, J. Lindblom, S. F. Powell, “Thin Film Filter Performance for Extreme Ultraviolet and X-Ray Applications,” Opt. Eng. 29, 614–624 (1990).
[CrossRef]

Link, R.

S. Chakrabarti, R. Link, G. R. Gladstone, “Ionospheric and Atmospheric Remote Sensing Using Passive Sensors,” Optoelectronic Technologies for Remote Sensing from Space, Proc. Soc. Photo-Opt. Instrum. Eng.868 (1987).

Lynch, D. A.

G. Leveque, D. A. Lynch, private communication (1982) quoted by E. D. Palik in Handbook of Optical Constants of Solids (Academic, New York, 1985).

MacRae, R. A.

M. W. Williams, R. A. MacRae, E. T. Arakawa, “Optical Properties of Magnetism Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38, 1701–1705 (1967).
[CrossRef]

McCoy, R. P.

R. P. McCoy, D. E. Anderson, S. Chakrabarti, “F2 Region Ion Densities from Analysis of O+ 834 Å Airglow: a Parametric Study and Comparisons with Satellite Data,” J. Geophys. Res. 90, 12257–12264 (1985).
[CrossRef]

Meier, R. R.

M. D. Morrison, C. W. Bowers, P. D. Feldman, R. R. Meier, “The EUV Dayglow at High Spectral Resolution,” J. Geophys. Res. 95, 4113–4127 (1990).
[CrossRef]

D. D. Cleary, R. R. Meier, E. P. Gentieu, P. D. Feldman, A. B. Christensen, “An Analysis of the Effects of N2 Absorption on the O+ 834 Å Emission from Rocket Observations,” J. Geophys. Res. 94, 17281–17285 (1989).
[CrossRef]

P. D. Feldman, D. E. Anderson, R. R. Meier, E. P. Gentieu, “The Ultraviolet Dayglow 4. The Spectrum and Excitation of Singly Ionized Oxygen,” J. Geophys. Res. 86, 3583–3588 (1981).
[CrossRef]

E. P. Gentieu, P. D. Feldman, R. R. Meier, “Spectroscopy of the Extreme Ultraviolet Dayglow at 6.5 Å Resolution: Atomic and Ionic Emissions Between 530 and 1240 Å,” Geophys. Res. Lett. 6, 325–328 (1979).
[CrossRef]

Morrison, M. D.

M. D. Morrison, C. W. Bowers, P. D. Feldman, R. R. Meier, “The EUV Dayglow at High Spectral Resolution,” J. Geophys. Res. 95, 4113–4127 (1990).
[CrossRef]

Oppenheimer, F.

Osantowski, J. F.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Paresce, F.

S. F. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Day Airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

S. Kumar, S. Chakrabarti, F. Paresce, S. Bowyer, “The O+ 834 Å Dayglow: Satellite Observations and Intepretation with a Radiation Transfer Model,” J. Geophys. Res. 88, 9271–9279 (1983).
[CrossRef]

F. Paresce, S. Chakrabarti, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Spectrum of Dayside and Nightside Aurorae: 800–1400 Å,” J. Geophys. Res. 88, 4905–4910 (1983).
[CrossRef]

S. Chakrabarti, S. Bowyer, F. Paresce, J. B. Franke, A. B. Christensen, “Long Term Variability of Transmission of Thin In-Sn and Sn-C Films for EUV Instrumentation,” Appl. Opt. 21, 3417–3418 (1982).
[CrossRef] [PubMed]

S. R. Bowyer, R. Kimble, F. Paresce, M. Lampton, G. Penegor, “Continuous-Readout Extreme-Ultraviolet Airglow Spectrometer,” Appl. Opt. 20, 477–486 (1981).
[CrossRef] [PubMed]

F. Paresce, “Quantum Efficiency of a Channel Electron Multiplier in the Far Ultraviolet,” Appl. Opt. 14, 2823–2824 (1975).
[CrossRef] [PubMed]

Penegor, G.

Philipp, H. R.

H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43, 2835–2839 (1972).
[CrossRef]

Potter, R. F.

R. F. Potter, “Basic Parameters for Measuring Optical Properties,” in Handbook of Optical Constants, E. D. Palik, Ed. (Academic, New York, 1985).

Powell, F. R.

F. R. Powell, P. W. Vedder, J. Lindblom, S. F. Powell, “Thin Film Filter Performance for Extreme Ultraviolet and X-Ray Applications,” Opt. Eng. 29, 614–624 (1990).
[CrossRef]

Powell, S. F.

F. R. Powell, P. W. Vedder, J. Lindblom, S. F. Powell, “Thin Film Filter Performance for Extreme Ultraviolet and X-Ray Applications,” Opt. Eng. 29, 614–624 (1990).
[CrossRef]

Rehn, V.

V. Rehn, J. L. Stanford, V. O. Jones, in Proceedings, Thirteenth International Conference on the Physics of Semiconductors, Rome (1976).

Robinson, R. M.

Y. T. Chiu, R. M. Robinson, G. R. Swenson, “Imaging the Outflow of Ionospheric Ions into the Magnetosphere,” Nature 322, 441–444 (1986).
[CrossRef]

Rustgi, O. P.

Samson, J. A. R.

Sasaki, T.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-Consistency and Sum-Rule Tests in the Kramers-Kronig Analysis of Optical Data: Application to Aluminum,” Phys. Rev. B 22, 1612–1624 (1980).
[CrossRef]

Schroeder, H. H.

Shiles, E.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-Consistency and Sum-Rule Tests in the Kramers-Kronig Analysis of Optical Data: Application to Aluminum,” Phys. Rev. B 22, 1612–1624 (1980).
[CrossRef]

Smith, D. Y.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-Consistency and Sum-Rule Tests in the Kramers-Kronig Analysis of Optical Data: Application to Aluminum,” Phys. Rev. B 22, 1612–1624 (1980).
[CrossRef]

Smith, R. W.

D. W. Swift, R. W. Smith, S. I. Akasofu, “Imaging the Earth’s Magnetosphere,” Planet. Space Sci. 37, 379–384 (1989).
[CrossRef]

Stanford, J. L.

V. Rehn, J. L. Stanford, V. O. Jones, in Proceedings, Thirteenth International Conference on the Physics of Semiconductors, Rome (1976).

Swenson, G. R.

Y. T. Chiu, R. M. Robinson, G. R. Swenson, “Imaging the Outflow of Ionospheric Ions into the Magnetosphere,” Nature 322, 441–444 (1986).
[CrossRef]

Swift, D. W.

D. W. Swift, R. W. Smith, S. I. Akasofu, “Imaging the Earth’s Magnetosphere,” Planet. Space Sci. 37, 379–384 (1989).
[CrossRef]

Timothy, J. G.

Toft, A. R.

Turner, A. F.

Vedder, P. W.

F. R. Powell, P. W. Vedder, J. Lindblom, S. F. Powell, “Thin Film Filter Performance for Extreme Ultraviolet and X-Ray Applications,” Opt. Eng. 29, 614–624 (1990).
[CrossRef]

Walker, W. C.

Weissler, G. L.

Williams, M. W.

M. W. Williams, R. A. MacRae, E. T. Arakawa, “Optical Properties of Magnetism Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38, 1701–1705 (1967).
[CrossRef]

Appl. Opt. (10)

S. R. Bowyer, R. Kimble, F. Paresce, M. Lampton, G. Penegor, “Continuous-Readout Extreme-Ultraviolet Airglow Spectrometer,” Appl. Opt. 20, 477–486 (1981).
[CrossRef] [PubMed]

T. T. Cole, F. Oppenheimer, “Polarization by Reflection and Some Optical Constants in the Extreme Ultraviolet,” Appl. Opt. 1, 709–710 (1962).
[CrossRef]

W. R. Hunter, J. F. Osantowski, G. Hass, “Reflectance of Aluminum Overcoated with MgF2 and LiF in the Wavelength Region from 1600 Å to 300 Å at Various Angles of Incidence,” Appl. Opt. 10, 540–544 (1971).
[CrossRef] [PubMed]

J. B. Heaney, H. Herzig, J. F. Osantowski, “Auger Spectroscopic Examination of MgF2-Coated Al Mirrors Before and After UV Irradiation,” Appl. Opt. 16, 1886–1889 (1977).
[CrossRef] [PubMed]

F. Paresce, “Quantum Efficiency of a Channel Electron Multiplier in the Far Ultraviolet,” Appl. Opt. 14, 2823–2824 (1975).
[CrossRef] [PubMed]

R. A. M. Keski-Kuhu, J. F. Osantowski, H. Herzig, J. S. Gum, A. R. Toft, “Normal Incidence Reflectance of Ion Beam Deposited SiC Films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
[CrossRef]

S. Chakrabarti, S. Bowyer, F. Paresce, J. B. Franke, A. B. Christensen, “Long Term Variability of Transmission of Thin In-Sn and Sn-C Films for EUV Instrumentation,” Appl. Opt. 21, 3417–3418 (1982).
[CrossRef] [PubMed]

M. Hurwitz, S. Labov, S. Chakrabarti, “Very Long-Term Stability of Thin Indium/Tin Film Transmission,” Appl. Opt. 24, 1735–1736 (1985).
[CrossRef] [PubMed]

L. B. Lapson, J. G. Timothy, “Use of MgF2 and LiF Photocathodes in the Extreme Ultraviolet,” Appl. Opt. 12, 388–393 (1973).
[CrossRef] [PubMed]

L. B. Lapson, J. G. Timothy, “Channel Electron Multipliers: Detection Efficiencies with Opaque MgF2 Photocathodes at XUV Wavelengths,” Appl. Opt. 15, 1218–1221 (1976).
[CrossRef] [PubMed]

EUV Optics for Astronomy and Microscopy (1)

J. Edelstein, “Reflection/Suppression Coatings for 900–1200 Å Radiation,” EUV Optics for Astronomy and Microscopy, Proc. Soc. Photo-Opt. Instrum. Eng.1160 (1989).

Geophys. Res. Lett. (1)

E. P. Gentieu, P. D. Feldman, R. R. Meier, “Spectroscopy of the Extreme Ultraviolet Dayglow at 6.5 Å Resolution: Atomic and Ionic Emissions Between 530 and 1240 Å,” Geophys. Res. Lett. 6, 325–328 (1979).
[CrossRef]

J. Appl. Phys. (2)

M. W. Williams, R. A. MacRae, E. T. Arakawa, “Optical Properties of Magnetism Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38, 1701–1705 (1967).
[CrossRef]

H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43, 2835–2839 (1972).
[CrossRef]

J. Geophys. Res. (9)

E. P. Gentieu, P. D. Feldman, R. W. Eastes, A. B. Christensen, “EUV Airglow During Active Solar Conditions 2. Emission Between 530 and 930 Å,” J. Geophys. Res. 89, 11053–11058 (1984).
[CrossRef]

M. D. Morrison, C. W. Bowers, P. D. Feldman, R. R. Meier, “The EUV Dayglow at High Spectral Resolution,” J. Geophys. Res. 95, 4113–4127 (1990).
[CrossRef]

S. F. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Day Airglow,” J. Geophys. Res. 88, 4898–4904 (1983).
[CrossRef]

F. Paresce, S. Chakrabarti, S. Bowyer, R. Kimble, “The Extreme Ultraviolet Spectrum of Dayside and Nightside Aurorae: 800–1400 Å,” J. Geophys. Res. 88, 4905–4910 (1983).
[CrossRef]

S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) Nightglow,” J. Geophys. Res. 89, 5660–5664 (1984).
[CrossRef]

P. D. Feldman, D. E. Anderson, R. R. Meier, E. P. Gentieu, “The Ultraviolet Dayglow 4. The Spectrum and Excitation of Singly Ionized Oxygen,” J. Geophys. Res. 86, 3583–3588 (1981).
[CrossRef]

S. Kumar, S. Chakrabarti, F. Paresce, S. Bowyer, “The O+ 834 Å Dayglow: Satellite Observations and Intepretation with a Radiation Transfer Model,” J. Geophys. Res. 88, 9271–9279 (1983).
[CrossRef]

R. P. McCoy, D. E. Anderson, S. Chakrabarti, “F2 Region Ion Densities from Analysis of O+ 834 Å Airglow: a Parametric Study and Comparisons with Satellite Data,” J. Geophys. Res. 90, 12257–12264 (1985).
[CrossRef]

D. D. Cleary, R. R. Meier, E. P. Gentieu, P. D. Feldman, A. B. Christensen, “An Analysis of the Effects of N2 Absorption on the O+ 834 Å Emission from Rocket Observations,” J. Geophys. Res. 94, 17281–17285 (1989).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Phys. (Paris) (1)

W. R. Hunter, “On the Optical Constants of Metals at Wavelengths Shorter than Their Critical Wavelengths,” J. Phys. (Paris) 25, 154–160 (1964).

Nature (1)

Y. T. Chiu, R. M. Robinson, G. R. Swenson, “Imaging the Outflow of Ionospheric Ions into the Magnetosphere,” Nature 322, 441–444 (1986).
[CrossRef]

Opt. Eng. (1)

F. R. Powell, P. W. Vedder, J. Lindblom, S. F. Powell, “Thin Film Filter Performance for Extreme Ultraviolet and X-Ray Applications,” Opt. Eng. 29, 614–624 (1990).
[CrossRef]

Optical Coatings—Applications and Utilization II (1)

W. R. Hunter, “A Review of Vacuum Ultraviolet Optics,” Optical Coatings—Applications and Utilization II, Proc. Soc. Photo-Opt. Instrum. Eng.140 (1978).

Optoelectronic Technologies for Remote Sensing from Space (1)

S. Chakrabarti, R. Link, G. R. Gladstone, “Ionospheric and Atmospheric Remote Sensing Using Passive Sensors,” Optoelectronic Technologies for Remote Sensing from Space, Proc. Soc. Photo-Opt. Instrum. Eng.868 (1987).

Phys. Rev. B (1)

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-Consistency and Sum-Rule Tests in the Kramers-Kronig Analysis of Optical Data: Application to Aluminum,” Phys. Rev. B 22, 1612–1624 (1980).
[CrossRef]

Phys. Thin Films (1)

G. Hass, W. R. Hunter, “The Use of Evaporated Films for Space Applications,” Phys. Thin Films 10, 71–86 (1978).

Planet. Space Sci. (1)

D. W. Swift, R. W. Smith, S. I. Akasofu, “Imaging the Earth’s Magnetosphere,” Planet. Space Sci. 37, 379–384 (1989).
[CrossRef]

Rev. Sci. Instrum. (1)

M. C. Johnson, “A Secondary Standard Vacuum Ultraviolet Detector,” Rev. Sci. Instrum. 40, 311–315 (1969).
[CrossRef]

Technologies for Optoelectronics (1)

W. R. Hunter, “Layered Synthetic Microstructures and Their Application in the VUV,” Technologies for Optoelectronics, Proc. Soc. Photo-Opt. Instrum. Eng.869 (1987).

Other (5)

D. Kossel, K. Deutscher, K. Hirschberg, “Interference Photocathode,” in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), Vol. 5.

R. F. Potter, “Basic Parameters for Measuring Optical Properties,” in Handbook of Optical Constants, E. D. Palik, Ed. (Academic, New York, 1985).

V. Rehn, J. L. Stanford, V. O. Jones, in Proceedings, Thirteenth International Conference on the Physics of Semiconductors, Rome (1976).

G. Leveque, D. A. Lynch, private communication (1982) quoted by E. D. Palik in Handbook of Optical Constants of Solids (Academic, New York, 1985).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical constants n (solid line) and k (dashed line) for MgF2, In, Al, Si, and SiC.

Fig. 2
Fig. 2

Calculated normal incidence reflectance at wavelengths of 834 and 1216 Å of unoxidized aluminum with a coating of MgF2 of varying thickness up to 1000 Å.

Fig. 3
Fig. 3

Calculated normal incidence reflectance of 150 Å of MgF2 on an unoxidized aluminum substrate. The reflectance of opaque MgF2 and unoxidized aluminum are also shown.

Fig. 4
Fig. 4

Contour plots of the calculated normal incidence reflectance at wavelengths of 834 and 1216 Å of Si and MgF2 layers of varying thickness on an unoxidized aluminum substrate.

Fig. 5
Fig. 5

Calculated normal incidence reflectance of 80 Å of Si and 110 Å of MgF2 on an unoxidized aluminum substrate.

Fig. 6
Fig. 6

Calculated reflectance as a function of incidence angle of 80 Å of Si and 110 Å of MgF2 on an unoxidized aluminum substrate at wavelengths of 834 and 1216 Å. The dashed line curves are for transverse electric polarization, the dot-dash line curves are for transverse magnetic polarization, and the solid line curves are for nonpolarized radiation.

Fig. 7
Fig. 7

Calculated normal incidence transmittance at wavelengths of 834 and 1216 Å of a film of MgF2 of varying thickness that is coated with 600 Å of In on each side.

Fig. 8
Fig. 8

Calculated normal incidence transmittance of a 1500 Å film of In and of a 250 Å film of MgF2 that is coated with 625 Å of In on each side.

Fig. 9
Fig. 9

Dashed line curve is the product of the reflectance of the Al/MgF2/Si mirror of Fig. 5 and the transmittance of the In/MgF2/In filter of Fig. 8. The dot-dash line curve is the product of the mirror reflectance, the filter transmittance, and the photoelectric yield of tungsten. The solid line curve is the product of the mirror reflectance, the filter transmittance, and the estimated photoelectric yield of the Al/MgF2/Ni photocathode.

Fig. 10
Fig. 10

Solid line curve is the calculated normal incidence reflectance of an interference photocathode coating composed of 580 Å of onto unoxidized aluminum. The MgF2 and 40 Å of Ni deposited dashed line curve is the reflectance of opaque nickel.

Metrics