Abstract

This study examined the physics of loose abrasive microgrinding (grinding with micron and submicron sized abrasives). More specifically, it focused on the transition from brittle to ductile mode grinding which occurs in this region of abrasive sizes. Process dependency on slurry chemistry was the primary area of emphasis and was studied for diamond abrasives varying in size from 3.0 to 0.75 μm on both ULE and Zerodur, with emphasis on ULE. Ductile mode grinding was achieved with smaller abrasives, as expected, however two significant discoveries were made. The first observation was that by simply changing slurry chemistry, it was possible to induce the transition from brittle fracture to ductile mode grinding in ULE. This transition point could be intentionally moved about for diamonds 3.0–0.75 μm in diameter. For any given abrasive size within these limits, either brittle fracture or ductile removal may be achieved, depending on the slurry used to suspend the diamonds. Several slurries were studied, including water, a series of homologous n-alcohols, and other solvents chosen for properties varying from molecular size to dielectric constant and zeta potential. The study revealed that this slurry dependency is primarily a Rebinder effect. The second finding was that a tremendous amount of surface stress is introduced in loose abrasive ductile mode grinding. This stress was observed when the Twyman Effect in ULE plates increased by a factor of 4 in the transition from the brittle to the ductile mode. An assessment of the cause of this stress is discussed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Phillips, G. M. Crimes, T. R. Wilshaw, “On the Mechanism of Material Removal by Free Abrasive Grinding of Glass and Fused Silica,” Wear 41, 327–350 (1977).
    [CrossRef]
  2. O. Podzimek, “Residual Stress and Deformation Energy Under Ground Surfaces of Brittle Solids,” U. Twente, NASA Report WB-85-16; B8664575 (23Apr.1986).
  3. W. J. Rupp, “Mechanism of the Diamond Lapping Process,” Appl. Opt. 13, 1264–1269 (1974).
  4. N. J. Brown, “Some Speculations on the Mechanisms of Abrasive Grinding and Polishing,” Precis. Eng. 9, 129–138 (1987).
    [CrossRef]
  5. D. Golini, W. J. Rupp, J. Zimmerman, “Microgrinding: New Technique for Rapid Fabrication of Large Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1113, 204–210 (1989).
  6. N. J. Brown, B. A. Fuchs, “Brittle to Shear Grinding Mode Transition for Loose Abrasive Grinding,” Report UCRL-100043 (Lawrence Livermore National Laboratory, CA, 1988).
  7. M. Tomozawa, “Water in Glass,” J. Non-Cryst. Solids 73, 197–204 (1985).
    [CrossRef]
  8. M. Tomozawa, “The Role of Water in the Mechanical Fatigue of Glasses,” in Advances in Fracture Research, Proceedings; Seventh International Conference on Fracture (ICF7)2, Houston TX (1989), pp. 1563–1570.
  9. W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of Surface Potential on the Kinetics of Glass Reactions with Aqueous Solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
    [CrossRef]
  10. T. A. Michalske, B. C. Bunker, “The Fracturing of Glass,” Sci. Am. 255, 122–129 (1987).
    [CrossRef]
  11. T. A. Michalske, S. W. Freiman, “A Molecular Mechanism for Stress Corrosion in Vitreous Silica,” J. Am. Ceram. Soc. 66, 284–288 (1983).
    [CrossRef]
  12. T. A. Michalske, B. C. Bunker, “Steric Effects in Stress Corrosion Fracture of Glass,” J. Am. Ceram. Soc. 70, 780–784 (1987).
    [CrossRef]
  13. A. R. C. Westwood, J. S. Ahearn, J. J. Mills, “Developments in the Theory and Application of Chemomechanical Effects,” Colloids Surf. 2, 1–35 (1981).
    [CrossRef]
  14. A. R. C. Westwood, “Tewksbury Lecture: Control and Application of Environment-Sensitive Fracture Processes,” J. Mater. Sci. 9, 1871–1895 (1974).
    [CrossRef]
  15. A. R. C. Westwood, N. H. Macmillan, “Environment-Sensitive Hardness of Nonmetals,” in Science of Hardness Testing (ASM, Metals Park, OH, 1973), pp. 377–417.
  16. R. E. Cuthrell, “The Role of Ion Aggregates in Rebinder-Westwood Environmental Effects on Wear as Monitored by Acoustic Emission,” J. Appl. Phys. 49, 432–436 (Jan.1978).
    [CrossRef]
  17. P. A. Rebinder, in Proceedings, Sixth Physics Conference, Moscow (1928).
  18. N. R. H. Perry, C. H. Chilton, Eds., Chemical Engineer’s Handbook (McGraw-Hill, New York, 1973), pp. 17–49.
  19. A. R. C. Westwood, W. M. Mularie, N. H. Macmillan, “Chemomechanical Effects in Soda-Lime Glass,” in Technical Digest, Symposium on the Strength of Glass and Glassware (Society of Glass Technology, Sheffield, England, 1974).
  20. J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Short-Time Chemomechanical Effects in MgO,” J. Appl. Phys. 50, 3699–3701 (May1979).
    [CrossRef]
  21. J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Chemomechanical Effects in ZnO,” J. Phys. Paris C6, 6, 40, c6–173 (1979).
  22. P. Sennett, J. P. Oliver, “Colloidal Dispersions, Electrokinetic Effects and the Concept of Zeta Potential,” in Proceedings, Symposium on Interfaces (American Chemical Society, Washington, DC, 1964), pp. 75–92.
  23. A. W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1976).
  24. E. Chibowski, L. Holysz, “A Study of n-Alkane Films on Solids by Zeta-Potential Measurements,” J. Colloid Interface Sci. 81, 8–13 (1981).
    [CrossRef]
  25. J. H. Kennedy, A. Foissy, “Measurement of Mobility and Zeta Potential of Beta-Alumina Suspensions in Various Solvents,” J. Am. Ceram. Soc. 60, 33–36 (1985).
    [CrossRef]
  26. N. J. Felici, J. P. Gosse, A. Solufomboahangy, “Liquid Flow Electrification and Zeta Potential in Hydrocarbons,” in Proceedings, Seventh International Conference on Conduction and Breakdown in Dielectric Liquids, Berlin, Germany (July 1981), pp. 284–288.
  27. R. E. Cuthrell, “The Influence of Hydrogen on the Deformation and Fracture of the Near Surface Region of Solids: Proposed Origin of the Rebinder-Westwood Effect,” J. Mater. Sci. 14, 612–618 (1979).
  28. R. E. Cuthrell, “The Embrittling Effects of Hydrogen on a Variety of Inorganic Materials as Indicated by Acoustic Emission,” J. Mater. Sci. 14, 2563–2566 (1979).
    [CrossRef]
  29. R. E. Cuthrell, “Near Surface Embrittlement of Solids by Hydrogen—The Origin of the Rebinder-Westwood Chemomechanical Effects,” J. Appl. Phys. 49, 5676–5677 (1978).
    [CrossRef]
  30. R. E. Cuthrell, “The Effect of Chemical Environments on the Fracture of Ceramic Surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 562 (1979), pp. 139–145.
  31. A. J. Dalladay, “Some Measurements of the Stresses Produced at the Surfaces of Glass by Grinding with Loose Abrasives,” Trans. Opt. Soc. London 23, 170–173 (1922).
    [CrossRef]
  32. W. Primak, “The Vitreous Silica Surface: Consequences of Grinding and Polishing,” Phys. Chem. Glasses 22, 43–47 (1981).
  33. E. G. Nikolova, “Review On the Twyman Effect and Some of Its Applications,” J. Mater. Sci. 20, 1–8 (1985).
    [CrossRef]
  34. F. Ratajczyk, “Die Abhängigkeit des Twymaneffets von den Schleifbedingungen des Optishen Glases,” Feingeratetechnol. 15, 445–453 (1966).
  35. W. J. Rupp, “Twyman Effect for ULE,” Workshop on Optical Fabrication and Testing Technical Digest 1987, Vol. 19 (Optical Society of America, Washington, DC, 1987), pp. 25–27.
  36. O. Podzimek, “Deformation Energy Under Optical Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 801, 221–225 (1987).
  37. T. R. Wilshaw, G. M. Crimes, K. Phillips, “Effects of Organic Liquids on the Abrasion of Glass, Silica and Quartz,” in Proceedings, Symposium on the Strength of Glass and Glassware (Society of Glass Technology, Sheffield, England, 1974).
  38. A. Bondi, “Vander Waals Volumes and Radii,” J. Phys. Chem. 68, 441–451 (1964).
    [CrossRef]
  39. P. P. Hed, D. F. Edwards, J. B. Davis, “Subsurface Damage in Optical Materials: Origin, Measurement, and Removal,” in Collected Papers from ASPE Spring Conference on Sub-Surface Damage in Glass, Tucson, AZ (25–27 Apr. 1989), pp. 99–125.

1989 (1)

D. Golini, W. J. Rupp, J. Zimmerman, “Microgrinding: New Technique for Rapid Fabrication of Large Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1113, 204–210 (1989).

1987 (4)

T. A. Michalske, B. C. Bunker, “The Fracturing of Glass,” Sci. Am. 255, 122–129 (1987).
[CrossRef]

T. A. Michalske, B. C. Bunker, “Steric Effects in Stress Corrosion Fracture of Glass,” J. Am. Ceram. Soc. 70, 780–784 (1987).
[CrossRef]

N. J. Brown, “Some Speculations on the Mechanisms of Abrasive Grinding and Polishing,” Precis. Eng. 9, 129–138 (1987).
[CrossRef]

O. Podzimek, “Deformation Energy Under Optical Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 801, 221–225 (1987).

1985 (3)

E. G. Nikolova, “Review On the Twyman Effect and Some of Its Applications,” J. Mater. Sci. 20, 1–8 (1985).
[CrossRef]

M. Tomozawa, “Water in Glass,” J. Non-Cryst. Solids 73, 197–204 (1985).
[CrossRef]

J. H. Kennedy, A. Foissy, “Measurement of Mobility and Zeta Potential of Beta-Alumina Suspensions in Various Solvents,” J. Am. Ceram. Soc. 60, 33–36 (1985).
[CrossRef]

1983 (1)

T. A. Michalske, S. W. Freiman, “A Molecular Mechanism for Stress Corrosion in Vitreous Silica,” J. Am. Ceram. Soc. 66, 284–288 (1983).
[CrossRef]

1981 (3)

A. R. C. Westwood, J. S. Ahearn, J. J. Mills, “Developments in the Theory and Application of Chemomechanical Effects,” Colloids Surf. 2, 1–35 (1981).
[CrossRef]

E. Chibowski, L. Holysz, “A Study of n-Alkane Films on Solids by Zeta-Potential Measurements,” J. Colloid Interface Sci. 81, 8–13 (1981).
[CrossRef]

W. Primak, “The Vitreous Silica Surface: Consequences of Grinding and Polishing,” Phys. Chem. Glasses 22, 43–47 (1981).

1979 (6)

W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of Surface Potential on the Kinetics of Glass Reactions with Aqueous Solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
[CrossRef]

R. E. Cuthrell, “The Influence of Hydrogen on the Deformation and Fracture of the Near Surface Region of Solids: Proposed Origin of the Rebinder-Westwood Effect,” J. Mater. Sci. 14, 612–618 (1979).

R. E. Cuthrell, “The Embrittling Effects of Hydrogen on a Variety of Inorganic Materials as Indicated by Acoustic Emission,” J. Mater. Sci. 14, 2563–2566 (1979).
[CrossRef]

J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Short-Time Chemomechanical Effects in MgO,” J. Appl. Phys. 50, 3699–3701 (May1979).
[CrossRef]

J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Chemomechanical Effects in ZnO,” J. Phys. Paris C6, 6, 40, c6–173 (1979).

R. E. Cuthrell, “The Effect of Chemical Environments on the Fracture of Ceramic Surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 562 (1979), pp. 139–145.

1978 (2)

R. E. Cuthrell, “Near Surface Embrittlement of Solids by Hydrogen—The Origin of the Rebinder-Westwood Chemomechanical Effects,” J. Appl. Phys. 49, 5676–5677 (1978).
[CrossRef]

R. E. Cuthrell, “The Role of Ion Aggregates in Rebinder-Westwood Environmental Effects on Wear as Monitored by Acoustic Emission,” J. Appl. Phys. 49, 432–436 (Jan.1978).
[CrossRef]

1977 (1)

K. Phillips, G. M. Crimes, T. R. Wilshaw, “On the Mechanism of Material Removal by Free Abrasive Grinding of Glass and Fused Silica,” Wear 41, 327–350 (1977).
[CrossRef]

1974 (2)

W. J. Rupp, “Mechanism of the Diamond Lapping Process,” Appl. Opt. 13, 1264–1269 (1974).

A. R. C. Westwood, “Tewksbury Lecture: Control and Application of Environment-Sensitive Fracture Processes,” J. Mater. Sci. 9, 1871–1895 (1974).
[CrossRef]

1966 (1)

F. Ratajczyk, “Die Abhängigkeit des Twymaneffets von den Schleifbedingungen des Optishen Glases,” Feingeratetechnol. 15, 445–453 (1966).

1964 (1)

A. Bondi, “Vander Waals Volumes and Radii,” J. Phys. Chem. 68, 441–451 (1964).
[CrossRef]

1922 (1)

A. J. Dalladay, “Some Measurements of the Stresses Produced at the Surfaces of Glass by Grinding with Loose Abrasives,” Trans. Opt. Soc. London 23, 170–173 (1922).
[CrossRef]

Adamson, A. W.

A. W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1976).

Ahearn, J. S.

A. R. C. Westwood, J. S. Ahearn, J. J. Mills, “Developments in the Theory and Application of Chemomechanical Effects,” Colloids Surf. 2, 1–35 (1981).
[CrossRef]

J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Short-Time Chemomechanical Effects in MgO,” J. Appl. Phys. 50, 3699–3701 (May1979).
[CrossRef]

J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Chemomechanical Effects in ZnO,” J. Phys. Paris C6, 6, 40, c6–173 (1979).

Bondi, A.

A. Bondi, “Vander Waals Volumes and Radii,” J. Phys. Chem. 68, 441–451 (1964).
[CrossRef]

Brown, N. J.

N. J. Brown, “Some Speculations on the Mechanisms of Abrasive Grinding and Polishing,” Precis. Eng. 9, 129–138 (1987).
[CrossRef]

N. J. Brown, B. A. Fuchs, “Brittle to Shear Grinding Mode Transition for Loose Abrasive Grinding,” Report UCRL-100043 (Lawrence Livermore National Laboratory, CA, 1988).

Bunker, B. C.

T. A. Michalske, B. C. Bunker, “The Fracturing of Glass,” Sci. Am. 255, 122–129 (1987).
[CrossRef]

T. A. Michalske, B. C. Bunker, “Steric Effects in Stress Corrosion Fracture of Glass,” J. Am. Ceram. Soc. 70, 780–784 (1987).
[CrossRef]

Chibowski, E.

E. Chibowski, L. Holysz, “A Study of n-Alkane Films on Solids by Zeta-Potential Measurements,” J. Colloid Interface Sci. 81, 8–13 (1981).
[CrossRef]

Crimes, G. M.

K. Phillips, G. M. Crimes, T. R. Wilshaw, “On the Mechanism of Material Removal by Free Abrasive Grinding of Glass and Fused Silica,” Wear 41, 327–350 (1977).
[CrossRef]

T. R. Wilshaw, G. M. Crimes, K. Phillips, “Effects of Organic Liquids on the Abrasion of Glass, Silica and Quartz,” in Proceedings, Symposium on the Strength of Glass and Glassware (Society of Glass Technology, Sheffield, England, 1974).

Cuthrell, R. E.

R. E. Cuthrell, “The Influence of Hydrogen on the Deformation and Fracture of the Near Surface Region of Solids: Proposed Origin of the Rebinder-Westwood Effect,” J. Mater. Sci. 14, 612–618 (1979).

R. E. Cuthrell, “The Embrittling Effects of Hydrogen on a Variety of Inorganic Materials as Indicated by Acoustic Emission,” J. Mater. Sci. 14, 2563–2566 (1979).
[CrossRef]

R. E. Cuthrell, “The Effect of Chemical Environments on the Fracture of Ceramic Surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 562 (1979), pp. 139–145.

R. E. Cuthrell, “Near Surface Embrittlement of Solids by Hydrogen—The Origin of the Rebinder-Westwood Chemomechanical Effects,” J. Appl. Phys. 49, 5676–5677 (1978).
[CrossRef]

R. E. Cuthrell, “The Role of Ion Aggregates in Rebinder-Westwood Environmental Effects on Wear as Monitored by Acoustic Emission,” J. Appl. Phys. 49, 432–436 (Jan.1978).
[CrossRef]

Dalladay, A. J.

A. J. Dalladay, “Some Measurements of the Stresses Produced at the Surfaces of Glass by Grinding with Loose Abrasives,” Trans. Opt. Soc. London 23, 170–173 (1922).
[CrossRef]

Davis, J. B.

P. P. Hed, D. F. Edwards, J. B. Davis, “Subsurface Damage in Optical Materials: Origin, Measurement, and Removal,” in Collected Papers from ASPE Spring Conference on Sub-Surface Damage in Glass, Tucson, AZ (25–27 Apr. 1989), pp. 99–125.

Edwards, D. F.

P. P. Hed, D. F. Edwards, J. B. Davis, “Subsurface Damage in Optical Materials: Origin, Measurement, and Removal,” in Collected Papers from ASPE Spring Conference on Sub-Surface Damage in Glass, Tucson, AZ (25–27 Apr. 1989), pp. 99–125.

Felici, N. J.

N. J. Felici, J. P. Gosse, A. Solufomboahangy, “Liquid Flow Electrification and Zeta Potential in Hydrocarbons,” in Proceedings, Seventh International Conference on Conduction and Breakdown in Dielectric Liquids, Berlin, Germany (July 1981), pp. 284–288.

Foissy, A.

J. H. Kennedy, A. Foissy, “Measurement of Mobility and Zeta Potential of Beta-Alumina Suspensions in Various Solvents,” J. Am. Ceram. Soc. 60, 33–36 (1985).
[CrossRef]

Freiman, S. W.

T. A. Michalske, S. W. Freiman, “A Molecular Mechanism for Stress Corrosion in Vitreous Silica,” J. Am. Ceram. Soc. 66, 284–288 (1983).
[CrossRef]

Fuchs, B. A.

N. J. Brown, B. A. Fuchs, “Brittle to Shear Grinding Mode Transition for Loose Abrasive Grinding,” Report UCRL-100043 (Lawrence Livermore National Laboratory, CA, 1988).

Furth, W. F.

W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of Surface Potential on the Kinetics of Glass Reactions with Aqueous Solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
[CrossRef]

Golini, D.

D. Golini, W. J. Rupp, J. Zimmerman, “Microgrinding: New Technique for Rapid Fabrication of Large Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1113, 204–210 (1989).

Gosse, J. P.

N. J. Felici, J. P. Gosse, A. Solufomboahangy, “Liquid Flow Electrification and Zeta Potential in Hydrocarbons,” in Proceedings, Seventh International Conference on Conduction and Breakdown in Dielectric Liquids, Berlin, Germany (July 1981), pp. 284–288.

Hed, P. P.

P. P. Hed, D. F. Edwards, J. B. Davis, “Subsurface Damage in Optical Materials: Origin, Measurement, and Removal,” in Collected Papers from ASPE Spring Conference on Sub-Surface Damage in Glass, Tucson, AZ (25–27 Apr. 1989), pp. 99–125.

Holysz, L.

E. Chibowski, L. Holysz, “A Study of n-Alkane Films on Solids by Zeta-Potential Measurements,” J. Colloid Interface Sci. 81, 8–13 (1981).
[CrossRef]

Kennedy, J. H.

J. H. Kennedy, A. Foissy, “Measurement of Mobility and Zeta Potential of Beta-Alumina Suspensions in Various Solvents,” J. Am. Ceram. Soc. 60, 33–36 (1985).
[CrossRef]

Macmillan, N. H.

A. R. C. Westwood, W. M. Mularie, N. H. Macmillan, “Chemomechanical Effects in Soda-Lime Glass,” in Technical Digest, Symposium on the Strength of Glass and Glassware (Society of Glass Technology, Sheffield, England, 1974).

A. R. C. Westwood, N. H. Macmillan, “Environment-Sensitive Hardness of Nonmetals,” in Science of Hardness Testing (ASM, Metals Park, OH, 1973), pp. 377–417.

Michalske, T. A.

T. A. Michalske, B. C. Bunker, “The Fracturing of Glass,” Sci. Am. 255, 122–129 (1987).
[CrossRef]

T. A. Michalske, B. C. Bunker, “Steric Effects in Stress Corrosion Fracture of Glass,” J. Am. Ceram. Soc. 70, 780–784 (1987).
[CrossRef]

T. A. Michalske, S. W. Freiman, “A Molecular Mechanism for Stress Corrosion in Vitreous Silica,” J. Am. Ceram. Soc. 66, 284–288 (1983).
[CrossRef]

Mills, J. J.

A. R. C. Westwood, J. S. Ahearn, J. J. Mills, “Developments in the Theory and Application of Chemomechanical Effects,” Colloids Surf. 2, 1–35 (1981).
[CrossRef]

J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Chemomechanical Effects in ZnO,” J. Phys. Paris C6, 6, 40, c6–173 (1979).

J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Short-Time Chemomechanical Effects in MgO,” J. Appl. Phys. 50, 3699–3701 (May1979).
[CrossRef]

Mularie, W. M.

W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of Surface Potential on the Kinetics of Glass Reactions with Aqueous Solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
[CrossRef]

A. R. C. Westwood, W. M. Mularie, N. H. Macmillan, “Chemomechanical Effects in Soda-Lime Glass,” in Technical Digest, Symposium on the Strength of Glass and Glassware (Society of Glass Technology, Sheffield, England, 1974).

Nikolova, E. G.

E. G. Nikolova, “Review On the Twyman Effect and Some of Its Applications,” J. Mater. Sci. 20, 1–8 (1985).
[CrossRef]

Oliver, J. P.

P. Sennett, J. P. Oliver, “Colloidal Dispersions, Electrokinetic Effects and the Concept of Zeta Potential,” in Proceedings, Symposium on Interfaces (American Chemical Society, Washington, DC, 1964), pp. 75–92.

Phillips, K.

K. Phillips, G. M. Crimes, T. R. Wilshaw, “On the Mechanism of Material Removal by Free Abrasive Grinding of Glass and Fused Silica,” Wear 41, 327–350 (1977).
[CrossRef]

T. R. Wilshaw, G. M. Crimes, K. Phillips, “Effects of Organic Liquids on the Abrasion of Glass, Silica and Quartz,” in Proceedings, Symposium on the Strength of Glass and Glassware (Society of Glass Technology, Sheffield, England, 1974).

Podzimek, O.

O. Podzimek, “Deformation Energy Under Optical Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 801, 221–225 (1987).

O. Podzimek, “Residual Stress and Deformation Energy Under Ground Surfaces of Brittle Solids,” U. Twente, NASA Report WB-85-16; B8664575 (23Apr.1986).

Primak, W.

W. Primak, “The Vitreous Silica Surface: Consequences of Grinding and Polishing,” Phys. Chem. Glasses 22, 43–47 (1981).

Ratajczyk, F.

F. Ratajczyk, “Die Abhängigkeit des Twymaneffets von den Schleifbedingungen des Optishen Glases,” Feingeratetechnol. 15, 445–453 (1966).

Rebinder, P. A.

P. A. Rebinder, in Proceedings, Sixth Physics Conference, Moscow (1928).

Rupp, W. J.

D. Golini, W. J. Rupp, J. Zimmerman, “Microgrinding: New Technique for Rapid Fabrication of Large Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1113, 204–210 (1989).

W. J. Rupp, “Mechanism of the Diamond Lapping Process,” Appl. Opt. 13, 1264–1269 (1974).

W. J. Rupp, “Twyman Effect for ULE,” Workshop on Optical Fabrication and Testing Technical Digest 1987, Vol. 19 (Optical Society of America, Washington, DC, 1987), pp. 25–27.

Sennett, P.

P. Sennett, J. P. Oliver, “Colloidal Dispersions, Electrokinetic Effects and the Concept of Zeta Potential,” in Proceedings, Symposium on Interfaces (American Chemical Society, Washington, DC, 1964), pp. 75–92.

Solufomboahangy, A.

N. J. Felici, J. P. Gosse, A. Solufomboahangy, “Liquid Flow Electrification and Zeta Potential in Hydrocarbons,” in Proceedings, Seventh International Conference on Conduction and Breakdown in Dielectric Liquids, Berlin, Germany (July 1981), pp. 284–288.

Tomozawa, M.

M. Tomozawa, “Water in Glass,” J. Non-Cryst. Solids 73, 197–204 (1985).
[CrossRef]

M. Tomozawa, “The Role of Water in the Mechanical Fatigue of Glasses,” in Advances in Fracture Research, Proceedings; Seventh International Conference on Fracture (ICF7)2, Houston TX (1989), pp. 1563–1570.

Westwood, A. R. C.

A. R. C. Westwood, J. S. Ahearn, J. J. Mills, “Developments in the Theory and Application of Chemomechanical Effects,” Colloids Surf. 2, 1–35 (1981).
[CrossRef]

W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of Surface Potential on the Kinetics of Glass Reactions with Aqueous Solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
[CrossRef]

J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Short-Time Chemomechanical Effects in MgO,” J. Appl. Phys. 50, 3699–3701 (May1979).
[CrossRef]

J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Chemomechanical Effects in ZnO,” J. Phys. Paris C6, 6, 40, c6–173 (1979).

A. R. C. Westwood, “Tewksbury Lecture: Control and Application of Environment-Sensitive Fracture Processes,” J. Mater. Sci. 9, 1871–1895 (1974).
[CrossRef]

A. R. C. Westwood, N. H. Macmillan, “Environment-Sensitive Hardness of Nonmetals,” in Science of Hardness Testing (ASM, Metals Park, OH, 1973), pp. 377–417.

A. R. C. Westwood, W. M. Mularie, N. H. Macmillan, “Chemomechanical Effects in Soda-Lime Glass,” in Technical Digest, Symposium on the Strength of Glass and Glassware (Society of Glass Technology, Sheffield, England, 1974).

Wilshaw, T. R.

K. Phillips, G. M. Crimes, T. R. Wilshaw, “On the Mechanism of Material Removal by Free Abrasive Grinding of Glass and Fused Silica,” Wear 41, 327–350 (1977).
[CrossRef]

T. R. Wilshaw, G. M. Crimes, K. Phillips, “Effects of Organic Liquids on the Abrasion of Glass, Silica and Quartz,” in Proceedings, Symposium on the Strength of Glass and Glassware (Society of Glass Technology, Sheffield, England, 1974).

Zimmerman, J.

D. Golini, W. J. Rupp, J. Zimmerman, “Microgrinding: New Technique for Rapid Fabrication of Large Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1113, 204–210 (1989).

Appl. Opt. (1)

Colloids Surf. (1)

A. R. C. Westwood, J. S. Ahearn, J. J. Mills, “Developments in the Theory and Application of Chemomechanical Effects,” Colloids Surf. 2, 1–35 (1981).
[CrossRef]

Feingeratetechnol. (1)

F. Ratajczyk, “Die Abhängigkeit des Twymaneffets von den Schleifbedingungen des Optishen Glases,” Feingeratetechnol. 15, 445–453 (1966).

J. Am. Ceram. Soc. (3)

J. H. Kennedy, A. Foissy, “Measurement of Mobility and Zeta Potential of Beta-Alumina Suspensions in Various Solvents,” J. Am. Ceram. Soc. 60, 33–36 (1985).
[CrossRef]

T. A. Michalske, S. W. Freiman, “A Molecular Mechanism for Stress Corrosion in Vitreous Silica,” J. Am. Ceram. Soc. 66, 284–288 (1983).
[CrossRef]

T. A. Michalske, B. C. Bunker, “Steric Effects in Stress Corrosion Fracture of Glass,” J. Am. Ceram. Soc. 70, 780–784 (1987).
[CrossRef]

J. Appl. Phys. (3)

R. E. Cuthrell, “The Role of Ion Aggregates in Rebinder-Westwood Environmental Effects on Wear as Monitored by Acoustic Emission,” J. Appl. Phys. 49, 432–436 (Jan.1978).
[CrossRef]

J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Short-Time Chemomechanical Effects in MgO,” J. Appl. Phys. 50, 3699–3701 (May1979).
[CrossRef]

R. E. Cuthrell, “Near Surface Embrittlement of Solids by Hydrogen—The Origin of the Rebinder-Westwood Chemomechanical Effects,” J. Appl. Phys. 49, 5676–5677 (1978).
[CrossRef]

J. Colloid Interface Sci. (1)

E. Chibowski, L. Holysz, “A Study of n-Alkane Films on Solids by Zeta-Potential Measurements,” J. Colloid Interface Sci. 81, 8–13 (1981).
[CrossRef]

J. Mater. Sci. (5)

R. E. Cuthrell, “The Influence of Hydrogen on the Deformation and Fracture of the Near Surface Region of Solids: Proposed Origin of the Rebinder-Westwood Effect,” J. Mater. Sci. 14, 612–618 (1979).

R. E. Cuthrell, “The Embrittling Effects of Hydrogen on a Variety of Inorganic Materials as Indicated by Acoustic Emission,” J. Mater. Sci. 14, 2563–2566 (1979).
[CrossRef]

A. R. C. Westwood, “Tewksbury Lecture: Control and Application of Environment-Sensitive Fracture Processes,” J. Mater. Sci. 9, 1871–1895 (1974).
[CrossRef]

W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of Surface Potential on the Kinetics of Glass Reactions with Aqueous Solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
[CrossRef]

E. G. Nikolova, “Review On the Twyman Effect and Some of Its Applications,” J. Mater. Sci. 20, 1–8 (1985).
[CrossRef]

J. Non-Cryst. Solids (1)

M. Tomozawa, “Water in Glass,” J. Non-Cryst. Solids 73, 197–204 (1985).
[CrossRef]

J. Phys. Chem. (1)

A. Bondi, “Vander Waals Volumes and Radii,” J. Phys. Chem. 68, 441–451 (1964).
[CrossRef]

J. Phys. Paris (1)

J. S. Ahearn, J. J. Mills, A. R. C. Westwood, “Chemomechanical Effects in ZnO,” J. Phys. Paris C6, 6, 40, c6–173 (1979).

Natl. Bur. Stand. (U.S.) Spec. Publ. (1)

R. E. Cuthrell, “The Effect of Chemical Environments on the Fracture of Ceramic Surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 562 (1979), pp. 139–145.

Phys. Chem. Glasses (1)

W. Primak, “The Vitreous Silica Surface: Consequences of Grinding and Polishing,” Phys. Chem. Glasses 22, 43–47 (1981).

Precis. Eng. (1)

N. J. Brown, “Some Speculations on the Mechanisms of Abrasive Grinding and Polishing,” Precis. Eng. 9, 129–138 (1987).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

D. Golini, W. J. Rupp, J. Zimmerman, “Microgrinding: New Technique for Rapid Fabrication of Large Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1113, 204–210 (1989).

O. Podzimek, “Deformation Energy Under Optical Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 801, 221–225 (1987).

Sci. Am. (1)

T. A. Michalske, B. C. Bunker, “The Fracturing of Glass,” Sci. Am. 255, 122–129 (1987).
[CrossRef]

Trans. Opt. Soc. London (1)

A. J. Dalladay, “Some Measurements of the Stresses Produced at the Surfaces of Glass by Grinding with Loose Abrasives,” Trans. Opt. Soc. London 23, 170–173 (1922).
[CrossRef]

Wear (1)

K. Phillips, G. M. Crimes, T. R. Wilshaw, “On the Mechanism of Material Removal by Free Abrasive Grinding of Glass and Fused Silica,” Wear 41, 327–350 (1977).
[CrossRef]

Other (13)

O. Podzimek, “Residual Stress and Deformation Energy Under Ground Surfaces of Brittle Solids,” U. Twente, NASA Report WB-85-16; B8664575 (23Apr.1986).

M. Tomozawa, “The Role of Water in the Mechanical Fatigue of Glasses,” in Advances in Fracture Research, Proceedings; Seventh International Conference on Fracture (ICF7)2, Houston TX (1989), pp. 1563–1570.

N. J. Brown, B. A. Fuchs, “Brittle to Shear Grinding Mode Transition for Loose Abrasive Grinding,” Report UCRL-100043 (Lawrence Livermore National Laboratory, CA, 1988).

P. A. Rebinder, in Proceedings, Sixth Physics Conference, Moscow (1928).

N. R. H. Perry, C. H. Chilton, Eds., Chemical Engineer’s Handbook (McGraw-Hill, New York, 1973), pp. 17–49.

A. R. C. Westwood, W. M. Mularie, N. H. Macmillan, “Chemomechanical Effects in Soda-Lime Glass,” in Technical Digest, Symposium on the Strength of Glass and Glassware (Society of Glass Technology, Sheffield, England, 1974).

W. J. Rupp, “Twyman Effect for ULE,” Workshop on Optical Fabrication and Testing Technical Digest 1987, Vol. 19 (Optical Society of America, Washington, DC, 1987), pp. 25–27.

P. Sennett, J. P. Oliver, “Colloidal Dispersions, Electrokinetic Effects and the Concept of Zeta Potential,” in Proceedings, Symposium on Interfaces (American Chemical Society, Washington, DC, 1964), pp. 75–92.

A. W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1976).

A. R. C. Westwood, N. H. Macmillan, “Environment-Sensitive Hardness of Nonmetals,” in Science of Hardness Testing (ASM, Metals Park, OH, 1973), pp. 377–417.

N. J. Felici, J. P. Gosse, A. Solufomboahangy, “Liquid Flow Electrification and Zeta Potential in Hydrocarbons,” in Proceedings, Seventh International Conference on Conduction and Breakdown in Dielectric Liquids, Berlin, Germany (July 1981), pp. 284–288.

T. R. Wilshaw, G. M. Crimes, K. Phillips, “Effects of Organic Liquids on the Abrasion of Glass, Silica and Quartz,” in Proceedings, Symposium on the Strength of Glass and Glassware (Society of Glass Technology, Sheffield, England, 1974).

P. P. Hed, D. F. Edwards, J. B. Davis, “Subsurface Damage in Optical Materials: Origin, Measurement, and Removal,” in Collected Papers from ASPE Spring Conference on Sub-Surface Damage in Glass, Tucson, AZ (25–27 Apr. 1989), pp. 99–125.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Photomicrographs of brittle, ductile, and polished ULE surfaces before and after etching.

Fig. 2
Fig. 2

Removal rate for ULE as a function of water content in methanol slurry.

Fig. 3
Fig. 3

Molecular size and dielectric constant of the n-alcohols.

Fig. 4
Fig. 4

Molecular size plotted against (a) removal rate and (b) microroughness for n-alcohols.

Fig. 5
Fig. 5

(a) Removal rate and (b) microroughness vs dielectric constant of the n-alcohols.

Fig. 6
Fig. 6

Removal rate vs dielectric constant for selected slurry fluids.

Fig. 7
Fig. 7

Microroughness vs dielectric constant for selected slurry fluids.

Fig. 8
Fig. 8

Cuthrell’s plot of acoustic emission rate (removal rate) vs dielectric constant for various grinding environments.

Fig. 9
Fig. 9

Removal rate vs molecular size for selected slurry fluids.

Fig. 10
Fig. 10

Fizeau interferograms showing the bending of a ULE plate due to the Twyman effect.

Fig. 11
Fig. 11

Twyman constant vs diamond abrasive size on ULE and Zerodur ground with a ceramic tool.

Fig. 12
Fig. 12

Twyman constant vs diamond abrasive size on ULE and Zerodur ground with a brass tool.

Fig. 13
Fig. 13

Surface stress (N) for ULE ground with a brass tool and various slurries.

Fig. 14
Fig. 14

Proposed model for loose abrasive microgrinding: (a) brittle, (b) ductile, and (c) glass flow.

Tables (1)

Tables Icon

Table 1 Selected Slurry Fluid Properties and Grinding Data

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ M = C p L Δ S ,
Δ T = Δ W / A sub ( D ) ,
R R = E R R ( A sub / A tool ) ,
Δ h = C ( D 2 / T 2 ) ,

Metrics