Abstract

Lenslet arrays can be used as phase gratings, having many diffraction orders with equal intensity. Applications are multiple imaging and illumination of arrays of optical or optoelectronic devices in digital optics. The homogeneity of the intensities within the array can be improved by using field lenslets. The basic theory as well as experiments with diffractive and with graded index lenses are shown.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Streibl, J. Jahns, “Techniques for Array Illumination,” Topical Meeting on Optical Computing 1989, Technical Digest Series 1989, Vol. 9 (Optical Society of America, Washington D.C., 1989), pp. 160–163.
  2. N. Streibl, “Beam Shaping with Optical Array Generators,” J. Mod. Opt. 36, 1559–1573 (1989), review paper.
    [CrossRef]
  3. H. Machida, J. Nitta, A. Seko, H. Kobayashi, “High-Efficiency Fiber Grating for Producing Multiple Beams of Uniform Intensity,” Appl. Opt. 23, 330–332 (1984).
    [CrossRef] [PubMed]
  4. J. Jahns, S. J. Walker, “Two-Dimensional Array of Diffractive Micro Lens Fabricated by Thin Film Deposition,” Appl. Opt. 29, 931–936 (1989).
    [CrossRef]
  5. M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion-Exchange Technique,” Jpn. J. Appl. Phys. 20, 296–298 (1981).
    [CrossRef]
  6. K. Hamanaka, H. Nemoto, M. Oikawa, E. Okuda, “Aberration Properties of the Planar Microlens Array and Its Application to Imaging Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 201, (1990).
  7. H. Bartelt, F. Sauer, “Space-Variant Filtering with Holographic Multifacet Elements,” Opt. Commun. 53, 296–301 (1985).
    [CrossRef]
  8. N. F. Borelli, D. L. Morse, R. H. Bellmann, W. L. Morgan, “Photolytic Technique for Producing Microlenses in Photo-sensitive Glass,” Appl. Opt. 24, 2520–2525, (1985).
    [CrossRef]
  9. Z. D. Popowic, R. A. Sprague, G. A. Neville Connel, “Technique for Monolithic Fabrication of Microlens Arrays,” Appl. Opt. 27, 1281–1284, (1988).
    [CrossRef]

1990

K. Hamanaka, H. Nemoto, M. Oikawa, E. Okuda, “Aberration Properties of the Planar Microlens Array and Its Application to Imaging Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 201, (1990).

1989

N. Streibl, “Beam Shaping with Optical Array Generators,” J. Mod. Opt. 36, 1559–1573 (1989), review paper.
[CrossRef]

J. Jahns, S. J. Walker, “Two-Dimensional Array of Diffractive Micro Lens Fabricated by Thin Film Deposition,” Appl. Opt. 29, 931–936 (1989).
[CrossRef]

1988

1985

1984

1981

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion-Exchange Technique,” Jpn. J. Appl. Phys. 20, 296–298 (1981).
[CrossRef]

Bartelt, H.

H. Bartelt, F. Sauer, “Space-Variant Filtering with Holographic Multifacet Elements,” Opt. Commun. 53, 296–301 (1985).
[CrossRef]

Bellmann, R. H.

Borelli, N. F.

Hamanaka, K.

K. Hamanaka, H. Nemoto, M. Oikawa, E. Okuda, “Aberration Properties of the Planar Microlens Array and Its Application to Imaging Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 201, (1990).

Iga, K.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion-Exchange Technique,” Jpn. J. Appl. Phys. 20, 296–298 (1981).
[CrossRef]

Jahns, J.

J. Jahns, S. J. Walker, “Two-Dimensional Array of Diffractive Micro Lens Fabricated by Thin Film Deposition,” Appl. Opt. 29, 931–936 (1989).
[CrossRef]

N. Streibl, J. Jahns, “Techniques for Array Illumination,” Topical Meeting on Optical Computing 1989, Technical Digest Series 1989, Vol. 9 (Optical Society of America, Washington D.C., 1989), pp. 160–163.

Kobayashi, H.

Machida, H.

Morgan, W. L.

Morse, D. L.

Nemoto, H.

K. Hamanaka, H. Nemoto, M. Oikawa, E. Okuda, “Aberration Properties of the Planar Microlens Array and Its Application to Imaging Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 201, (1990).

Neville Connel, G. A.

Nishizawa, K.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion-Exchange Technique,” Jpn. J. Appl. Phys. 20, 296–298 (1981).
[CrossRef]

Nitta, J.

Oikawa, M.

K. Hamanaka, H. Nemoto, M. Oikawa, E. Okuda, “Aberration Properties of the Planar Microlens Array and Its Application to Imaging Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 201, (1990).

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion-Exchange Technique,” Jpn. J. Appl. Phys. 20, 296–298 (1981).
[CrossRef]

Okuda, E.

K. Hamanaka, H. Nemoto, M. Oikawa, E. Okuda, “Aberration Properties of the Planar Microlens Array and Its Application to Imaging Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 201, (1990).

Popowic, Z. D.

Sanada, T.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion-Exchange Technique,” Jpn. J. Appl. Phys. 20, 296–298 (1981).
[CrossRef]

Sauer, F.

H. Bartelt, F. Sauer, “Space-Variant Filtering with Holographic Multifacet Elements,” Opt. Commun. 53, 296–301 (1985).
[CrossRef]

Seko, A.

Sprague, R. A.

Streibl, N.

N. Streibl, “Beam Shaping with Optical Array Generators,” J. Mod. Opt. 36, 1559–1573 (1989), review paper.
[CrossRef]

N. Streibl, J. Jahns, “Techniques for Array Illumination,” Topical Meeting on Optical Computing 1989, Technical Digest Series 1989, Vol. 9 (Optical Society of America, Washington D.C., 1989), pp. 160–163.

Walker, S. J.

Yamamoto, N.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion-Exchange Technique,” Jpn. J. Appl. Phys. 20, 296–298 (1981).
[CrossRef]

Appl. Opt.

J. Mod. Opt.

N. Streibl, “Beam Shaping with Optical Array Generators,” J. Mod. Opt. 36, 1559–1573 (1989), review paper.
[CrossRef]

Jpn. J. Appl. Phys.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion-Exchange Technique,” Jpn. J. Appl. Phys. 20, 296–298 (1981).
[CrossRef]

Opt. Commun.

H. Bartelt, F. Sauer, “Space-Variant Filtering with Holographic Multifacet Elements,” Opt. Commun. 53, 296–301 (1985).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

K. Hamanaka, H. Nemoto, M. Oikawa, E. Okuda, “Aberration Properties of the Planar Microlens Array and Its Application to Imaging Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 201, (1990).

Other

N. Streibl, J. Jahns, “Techniques for Array Illumination,” Topical Meeting on Optical Computing 1989, Technical Digest Series 1989, Vol. 9 (Optical Society of America, Washington D.C., 1989), pp. 160–163.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fourier-type array generator consisting of a diffraction grating and an optical Fourier transformation.

Fig. 2
Fig. 2

Theoretically calculated intensity profile of a lenslet array generator consisting of a single lenslet.

Fig. 3
Fig. 3

Dependence of the calculated inhomogeneity of a lenslet array generator on the number of spots.

Fig. 4
Fig. 4

Lenslet array generator with field lenslet array.

Fig. 5
Fig. 5

Microphotograph of a diffractive lens consisting of eight discrete phase levels.

Fig. 6
Fig. 6

Array generated by the diffractive lens shown in Fig. 5 with pinhole grating as spatial filter.

Fig. 7
Fig. 7

Array generated by using an array of distributed index microlenses in a double pass geometry as lenslet and field lenslet at the same time.

Fig. 8
Fig. 8

Closeup of the array in Fig. 7.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

u ( x ) = g ( x ) n = - + h ( x - n p ) .
U ( x ) = G ( x λ F ) * [ H ( x λ F ) m = - δ ( x λ F - m p ) ] ,
U ( x ) m = - H ( m p ) × G ( x λ F - m p ) .
h ( x ) = rect ( x p ) exp ( - i π x 2 λ f ) .
H ( m / p ) = exp [ + i π λ f ( m / p ) 2 · 1 p - + rect ( x / p ) exp [ - i π λ f ( x - λ f m / p ) 2 ] d x .
H ( m / p ) { c [ exp ( + i π λ f ( m / p ) 2 ] for m < ½ N , 0 otherwise ,
N = p 2 λ f .
f ^ ( x ) = exp ( i π x 2 λ f ) × sinc ( p x λ f ) .

Metrics