Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Heterodyne Doppler 1-μm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence

Not Accessible

Your library or personal account may give you access

Abstract

We performed an experimental study on the effect of atmospheric turbulence on heterodyne and direct detection lidar at 1 μm, employing a pulsed Nd:YAG bistatic focused beam lidar that permitted simultaneous heterodyne and direct detection of the same lidar returns. The average carrier-to-noise ratio and statistical fluctuation level in the lidar return signals were measured in various experimental and atmospheric conditions. The results showed that atmospheric turbulence could reduce the effective receiver telescope diameter of the 1-μm heterodyne lidar to <5 cm at a relatively short range of ~450 m near the ground. The observed effective telescope aperture and heterodyne detection efficiency varied during the day as the atmospheric turbulence level changed. At this time, we are not able to compare our experimental lidar data to a rigorous atmospheric turbulence and lidar detection theory which includes independently variable transmitter, receiver, and detector geometry. It is interesting to note, however, that the observed limitation of the effective receiver aperture was similar in functional form with those predictions based on the heterodyne wavefront detection theory by D. L. Fried [ Proc. IEEE 55, 57– 67 ( 1967)] and the heterodyne lidar detection theory for a fixed monostatic system by S. F. Clifford and S. Wandzura [ Appl. Opt. 20, 514– 516 ( 1981)]. We have also applied such an effective receiver aperture limitation to predict the system performance for a heterodyne Ho lidar operating at 2 μm.

© 1991 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimal heterodyne detector array size for 1-μm coherent lidar propagation through atmospheric turbulence

Nobuo Sugimoto, Kin Pui Chan, and Dennis K. Killinger
Appl. Opt. 30(18) 2609-2616 (1991)

Effect of atmospheric turbulence on heterodyne lidar performance

Mikhail S. Belen’kii
Appl. Opt. 32(27) 5368-5372 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved