Abstract

Single-mode optical fiber ring (or loop) resonator utilizing degenerate two-wave mixing is proposed. The degenerate two-wave mixing can bring the fiber ring into full resonance and enhance the finesse or amplify the output intensity and change its characteristic from being of the channel-blocking to channel-passing type.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Stokes, M. Chodorow, H. J. Shaw, “All-Single-Mode Fiber Resonator,” Opt. Lett. 7, 288–290 (1982).
    [CrossRef] [PubMed]
  2. P. Urquhart, “Compound Optical-Fiber-Based Resonators,” J. Opt. Soc. Am. A 5, 803–812 (1988).
    [CrossRef]
  3. Y. H. Ja, “Optical Fiber Loop Resonators with Double Couplers,” Opt. Commun. 75, 239–245 (1990).
    [CrossRef]
  4. Y. H. Ja, “Energy Transfer Between Two Beams in Writing a Reflection Volume Hologram in a Dynamic Medium,” Opt. Quantum Electron. 14, 547–556 (1982).
    [CrossRef]
  5. K. O. Hill, D. C. Fujii, B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  6. J. Stone, “Photorefractivity in GeO2 Doped Silica Fibers,” J. Appl. Phys. 62, 4371–4373 (1987).
    [CrossRef]
  7. F. P. Payne, “Photorefractive Gratings in Single-Mode Optical Fibers,” Electron. Lett. 25, 498–499 (1989).
    [CrossRef]
  8. P. Gunter, “Holography, Coherent Light Amplification and Optical Phase Conjugation with Photorefractive Materials,” Phys. Rep. 93, 199–299 (1982).
    [CrossRef]
  9. J. P. Huignard, Electro-Optic and Photorefractive Materials, P. Gunter, Ed. (Springer-Verlag, Berlin, 1987).

1990 (1)

Y. H. Ja, “Optical Fiber Loop Resonators with Double Couplers,” Opt. Commun. 75, 239–245 (1990).
[CrossRef]

1989 (1)

F. P. Payne, “Photorefractive Gratings in Single-Mode Optical Fibers,” Electron. Lett. 25, 498–499 (1989).
[CrossRef]

1988 (1)

1987 (1)

J. Stone, “Photorefractivity in GeO2 Doped Silica Fibers,” J. Appl. Phys. 62, 4371–4373 (1987).
[CrossRef]

1982 (3)

L. F. Stokes, M. Chodorow, H. J. Shaw, “All-Single-Mode Fiber Resonator,” Opt. Lett. 7, 288–290 (1982).
[CrossRef] [PubMed]

P. Gunter, “Holography, Coherent Light Amplification and Optical Phase Conjugation with Photorefractive Materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Y. H. Ja, “Energy Transfer Between Two Beams in Writing a Reflection Volume Hologram in a Dynamic Medium,” Opt. Quantum Electron. 14, 547–556 (1982).
[CrossRef]

1978 (1)

K. O. Hill, D. C. Fujii, B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Chodorow, M.

Fujii, D. C.

K. O. Hill, D. C. Fujii, B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Gunter, P.

P. Gunter, “Holography, Coherent Light Amplification and Optical Phase Conjugation with Photorefractive Materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Hill, K. O.

K. O. Hill, D. C. Fujii, B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Huignard, J. P.

J. P. Huignard, Electro-Optic and Photorefractive Materials, P. Gunter, Ed. (Springer-Verlag, Berlin, 1987).

Ja, Y. H.

Y. H. Ja, “Optical Fiber Loop Resonators with Double Couplers,” Opt. Commun. 75, 239–245 (1990).
[CrossRef]

Y. H. Ja, “Energy Transfer Between Two Beams in Writing a Reflection Volume Hologram in a Dynamic Medium,” Opt. Quantum Electron. 14, 547–556 (1982).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, D. C. Fujii, B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Payne, F. P.

F. P. Payne, “Photorefractive Gratings in Single-Mode Optical Fibers,” Electron. Lett. 25, 498–499 (1989).
[CrossRef]

Shaw, H. J.

Stokes, L. F.

Stone, J.

J. Stone, “Photorefractivity in GeO2 Doped Silica Fibers,” J. Appl. Phys. 62, 4371–4373 (1987).
[CrossRef]

Urquhart, P.

Appl. Phys. Lett. (1)

K. O. Hill, D. C. Fujii, B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Electron. Lett. (1)

F. P. Payne, “Photorefractive Gratings in Single-Mode Optical Fibers,” Electron. Lett. 25, 498–499 (1989).
[CrossRef]

J. Appl. Phys. (1)

J. Stone, “Photorefractivity in GeO2 Doped Silica Fibers,” J. Appl. Phys. 62, 4371–4373 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

Y. H. Ja, “Optical Fiber Loop Resonators with Double Couplers,” Opt. Commun. 75, 239–245 (1990).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

Y. H. Ja, “Energy Transfer Between Two Beams in Writing a Reflection Volume Hologram in a Dynamic Medium,” Opt. Quantum Electron. 14, 547–556 (1982).
[CrossRef]

Phys. Rep. (1)

P. Gunter, “Holography, Coherent Light Amplification and Optical Phase Conjugation with Photorefractive Materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Other (1)

J. P. Huignard, Electro-Optic and Photorefractive Materials, P. Gunter, Ed. (Springer-Verlag, Berlin, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Single-coupler fiber ring resonator using degenerate two-wave mixing: C1,2, couplers.

Fig. 2
Fig. 2

Effect of the DTWM on a fiber ring under partial resonance: (a) circulating intensity; (b) output intensity. Kr = 0.01, (at)2 = 0.7, and g = 1.4143.

Fig. 3
Fig. 3

Effects of the DTWM on a fiber ring under full resonance: (a) circulating intensity; (b) output intensity. Kr = 0.2, (at)2 = 0.8, and g = 1.4625.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E 3 a = a ( 1 - K ) 1 / 2 E 1 t + j a K 1 / 2 E 2 t ,
E 4 a = j a K 1 / 2 E 1 t + a ( 1 - K ) 1 / 2 E 2 t .
E 1 t = E 1 ,
E 2 t = g 1 / 2 exp [ ( - α + j β ) l ] E 4 a = g 1 / 2 L E 4 a ,
I 4 a I 1 = a 2 K I d ,
I 3 a I 1 = a 2 1 - K - 2 [ g ( 1 - K ) ] 1 / 2 a t cos β l + a 2 t 2 g I d ,
I d = 1 + a 2 g ( 1 - K ) t 2 - 2 a [ g ( 1 - K ) ] 1 / 2 t cos β l ,
t = exp ( - α l ) .
β l = 2 m π , m = 1 , 2 , , N ,
1 - K r = a 2 t 2 ,
1 - K r = g a 2 t 2 ( with g > 1 ) .

Metrics