Abstract

The readout properties of the specklegram recorded in a photorefractive Bi12SiO20 (BSO) crystal plate have been investigated by observing the Young fringes and the polarization change of the light transmitted from the BSO plate. The Young fringes can be obtained without an analyzer by any linearly polarized readout beam; they have higher visibility than those obtained from a photographic plate specklegram, since the specklegram recorded in the BSO crystal can be read out by the spatial distribution of both the degree of polarization and the azimuth angle of polarization. Selective interference of a kind is performed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Eng. 22, 704–711 (1983).
  2. H. J. Tiziani, K. Leonhardt, J. Klenk, “Real-Time Displacement and Tilt Analysis by a Speckle Technique Using Bi12SiO20 Crystal,” Opt. Commun. 34, 327–331 (1980).
    [CrossRef]
  3. K. Nakagawa, T. Takatsuji, T. Minemoto, “Measurement of the Displacement Distribution by a Speckle Photography Method Using BSO Crystal,” Opt. Commun. 76, 206–212 (1990).
    [CrossRef]
  4. J. F. Nye, Physical Properties of Crystals (Oxford U., New York, 1960), pp. 260–274.
  5. F. Vachss, L. Hesselink, “Measurement of the Electrogyration and Electro-Optic Effects in BSO and BGO,” Opt. Commun. 62, 159–165 (1987).
    [CrossRef]
  6. K. Nakagawa, N. Kajita, J. Chen, T. Minemoto, “Measurement of the Electrogyration Coefficient in Photorefractive Bi12SiO20 Crystal,” J. Appl. Phys. 69, 954–958 (1991).
    [CrossRef]
  7. G. F. Moore, P. V. Lenzo, E. G. Spencer, A. A. Ballan, “Photoactivity and Field Induced Changes in Optical Rotation in Bismuth Silicon Oxide (Bi12SiO20),” J. Appl. Phys. 40, 2361–2362 (1969).
    [CrossRef]

1991 (1)

K. Nakagawa, N. Kajita, J. Chen, T. Minemoto, “Measurement of the Electrogyration Coefficient in Photorefractive Bi12SiO20 Crystal,” J. Appl. Phys. 69, 954–958 (1991).
[CrossRef]

1990 (1)

K. Nakagawa, T. Takatsuji, T. Minemoto, “Measurement of the Displacement Distribution by a Speckle Photography Method Using BSO Crystal,” Opt. Commun. 76, 206–212 (1990).
[CrossRef]

1987 (1)

F. Vachss, L. Hesselink, “Measurement of the Electrogyration and Electro-Optic Effects in BSO and BGO,” Opt. Commun. 62, 159–165 (1987).
[CrossRef]

1983 (1)

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Eng. 22, 704–711 (1983).

1980 (1)

H. J. Tiziani, K. Leonhardt, J. Klenk, “Real-Time Displacement and Tilt Analysis by a Speckle Technique Using Bi12SiO20 Crystal,” Opt. Commun. 34, 327–331 (1980).
[CrossRef]

1969 (1)

G. F. Moore, P. V. Lenzo, E. G. Spencer, A. A. Ballan, “Photoactivity and Field Induced Changes in Optical Rotation in Bismuth Silicon Oxide (Bi12SiO20),” J. Appl. Phys. 40, 2361–2362 (1969).
[CrossRef]

Ballan, A. A.

G. F. Moore, P. V. Lenzo, E. G. Spencer, A. A. Ballan, “Photoactivity and Field Induced Changes in Optical Rotation in Bismuth Silicon Oxide (Bi12SiO20),” J. Appl. Phys. 40, 2361–2362 (1969).
[CrossRef]

Chen, J.

K. Nakagawa, N. Kajita, J. Chen, T. Minemoto, “Measurement of the Electrogyration Coefficient in Photorefractive Bi12SiO20 Crystal,” J. Appl. Phys. 69, 954–958 (1991).
[CrossRef]

Hesselink, L.

F. Vachss, L. Hesselink, “Measurement of the Electrogyration and Electro-Optic Effects in BSO and BGO,” Opt. Commun. 62, 159–165 (1987).
[CrossRef]

Kajita, N.

K. Nakagawa, N. Kajita, J. Chen, T. Minemoto, “Measurement of the Electrogyration Coefficient in Photorefractive Bi12SiO20 Crystal,” J. Appl. Phys. 69, 954–958 (1991).
[CrossRef]

Klein, M. B.

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Eng. 22, 704–711 (1983).

Klenk, J.

H. J. Tiziani, K. Leonhardt, J. Klenk, “Real-Time Displacement and Tilt Analysis by a Speckle Technique Using Bi12SiO20 Crystal,” Opt. Commun. 34, 327–331 (1980).
[CrossRef]

Lenzo, P. V.

G. F. Moore, P. V. Lenzo, E. G. Spencer, A. A. Ballan, “Photoactivity and Field Induced Changes in Optical Rotation in Bismuth Silicon Oxide (Bi12SiO20),” J. Appl. Phys. 40, 2361–2362 (1969).
[CrossRef]

Leonhardt, K.

H. J. Tiziani, K. Leonhardt, J. Klenk, “Real-Time Displacement and Tilt Analysis by a Speckle Technique Using Bi12SiO20 Crystal,” Opt. Commun. 34, 327–331 (1980).
[CrossRef]

Minemoto, T.

K. Nakagawa, N. Kajita, J. Chen, T. Minemoto, “Measurement of the Electrogyration Coefficient in Photorefractive Bi12SiO20 Crystal,” J. Appl. Phys. 69, 954–958 (1991).
[CrossRef]

K. Nakagawa, T. Takatsuji, T. Minemoto, “Measurement of the Displacement Distribution by a Speckle Photography Method Using BSO Crystal,” Opt. Commun. 76, 206–212 (1990).
[CrossRef]

Moore, G. F.

G. F. Moore, P. V. Lenzo, E. G. Spencer, A. A. Ballan, “Photoactivity and Field Induced Changes in Optical Rotation in Bismuth Silicon Oxide (Bi12SiO20),” J. Appl. Phys. 40, 2361–2362 (1969).
[CrossRef]

Nakagawa, K.

K. Nakagawa, N. Kajita, J. Chen, T. Minemoto, “Measurement of the Electrogyration Coefficient in Photorefractive Bi12SiO20 Crystal,” J. Appl. Phys. 69, 954–958 (1991).
[CrossRef]

K. Nakagawa, T. Takatsuji, T. Minemoto, “Measurement of the Displacement Distribution by a Speckle Photography Method Using BSO Crystal,” Opt. Commun. 76, 206–212 (1990).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford U., New York, 1960), pp. 260–274.

Spencer, E. G.

G. F. Moore, P. V. Lenzo, E. G. Spencer, A. A. Ballan, “Photoactivity and Field Induced Changes in Optical Rotation in Bismuth Silicon Oxide (Bi12SiO20),” J. Appl. Phys. 40, 2361–2362 (1969).
[CrossRef]

Takatsuji, T.

K. Nakagawa, T. Takatsuji, T. Minemoto, “Measurement of the Displacement Distribution by a Speckle Photography Method Using BSO Crystal,” Opt. Commun. 76, 206–212 (1990).
[CrossRef]

Tiziani, H. J.

H. J. Tiziani, K. Leonhardt, J. Klenk, “Real-Time Displacement and Tilt Analysis by a Speckle Technique Using Bi12SiO20 Crystal,” Opt. Commun. 34, 327–331 (1980).
[CrossRef]

Vachss, F.

F. Vachss, L. Hesselink, “Measurement of the Electrogyration and Electro-Optic Effects in BSO and BGO,” Opt. Commun. 62, 159–165 (1987).
[CrossRef]

Valley, G. C.

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Eng. 22, 704–711 (1983).

J. Appl. Phys. (2)

K. Nakagawa, N. Kajita, J. Chen, T. Minemoto, “Measurement of the Electrogyration Coefficient in Photorefractive Bi12SiO20 Crystal,” J. Appl. Phys. 69, 954–958 (1991).
[CrossRef]

G. F. Moore, P. V. Lenzo, E. G. Spencer, A. A. Ballan, “Photoactivity and Field Induced Changes in Optical Rotation in Bismuth Silicon Oxide (Bi12SiO20),” J. Appl. Phys. 40, 2361–2362 (1969).
[CrossRef]

Opt. Commun. (3)

H. J. Tiziani, K. Leonhardt, J. Klenk, “Real-Time Displacement and Tilt Analysis by a Speckle Technique Using Bi12SiO20 Crystal,” Opt. Commun. 34, 327–331 (1980).
[CrossRef]

K. Nakagawa, T. Takatsuji, T. Minemoto, “Measurement of the Displacement Distribution by a Speckle Photography Method Using BSO Crystal,” Opt. Commun. 76, 206–212 (1990).
[CrossRef]

F. Vachss, L. Hesselink, “Measurement of the Electrogyration and Electro-Optic Effects in BSO and BGO,” Opt. Commun. 62, 159–165 (1987).
[CrossRef]

Opt. Eng. (1)

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Eng. 22, 704–711 (1983).

Other (1)

J. F. Nye, Physical Properties of Crystals (Oxford U., New York, 1960), pp. 260–274.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration to observe polarization of light transmitted from the BSO crystal.

Fig. 2
Fig. 2

Experimental results and theoretical values for P(ϕ) when (a) E‖ 〈110〉 and (b) E‖ 〈001〈.

Fig. 3
Fig. 3

Experimental results and theoretical values for R(ϕ) when (a) E‖ 〈110〉 and (b) E‖ 〈001〉.

Fig. 4
Fig. 4

Configuration of the readout and the Fourier transformation for the BSO specklegram.

Fig. 5
Fig. 5

Young fringes generated from the BSO device.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ν out = M ν in .
M = [ cos ( r L ) + i sin ( r L ) sin θ - sin ( r L ) cos θ sin ( r L ) cos θ cos ( r L ) - i sin ( r L ) sin θ ] ,
r = ( ρ 2 + δ 2 ) 1 / 2 ,             tan θ = δ / ρ ,
2 δ = ( 2 π / λ ) ( 1 / 2 ) n 0 3 r 41 E ,
2 δ = ( 2 π / λ ) n 0 3 r 41 E ,
ν in = [ sin ( ϕ + ψ ) cos ( ϕ + ψ ) ] ,
A 0 = ( sin Φ cos Φ ) [ cos ( ϕ + ψ ) , - sin ( ϕ + ψ ) sin ( ϕ + ψ ) , cos ( ϕ + ψ ) ] ν out ,
I ( Φ ) = A 0 2 = C { 1 + P ( ϕ ) cos [ 2 Φ - 2 R ( ϕ ) ] } ,
t ( x ) Σ g j ( x - x j ) P j + Σ g k ( x - x k - A ) P k ,
Y ( x ) Σ P j G j ( x ) exp [ - i ( x j · x ) ] + Σ P k G k ( x ) × exp [ - i ( x k + A ) · x ] 2 , = 2 Σ P j 2 G j 2 + 2 Σ P j 2 G j 2 cos ( A · x ) + 2 j l P j · P 1 G j G 1 * exp [ - i ( x j - x 1 ) · x ] + j l P j · P 1 { G j G 1 * exp [ - i ( x j - x 1 - A ) · x ] + G j * G 1 exp [ i ( x j - x 1 - A ) · x ] , = 2 Σ G j 2 + 2 Σ G j 2 cos ( A · x ) + j + l P j · P 1 G j G 1 * { 2 exp [ - i ( x j - x 1 ) · x ] + exp [ - i ( x j - x 1 - A ) · x ] + exp [ i ( x j - x 1 - A ) · x ) } ,
P j · P k = 1 at j = k , 0 _ P j · P k _ 1 at j k .
t ( x ) Σ g j ( x - x j ) + Σ g k ( x - x k - A ) .
Y ( x ) 2 G j 2 + 2 G j 2 cos ( A · x ) + j l G j G 1 * { 2 exp [ - i ( x j - x 1 ) · x ] + exp [ - i ( x j - x 1 - A ) · x ] + exp [ i ( x j - x 1 - A ) · x ] } .

Metrics