Abstract

A practical thirty-six processor computer system employing manually reconfigurable board-to-board free-space optical interconnections has been built. The free-space optical interconnection section employs collimated beams that have 90 cm of transmission length at the maximum. It acts as a reconfigurable optical backplane that accommodates 144 input/output ports. The processors applied to the system are Transputers, each of which has four bidirectional links to communicate with other Transputers. This paper describes the design concept and the optical interconnection performances of the optical interconnection section employed in the constructed system.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Keyes, “Fundamental Limits in Digital Information Processing,” Proc. IEEE 69, 267–278 (1981).
    [Crossref]
  2. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
    [Crossref]
  3. T. Fountain, Processor Arrays: Architecture and Applications (Academic, New York, 1987).
  4. Y. Okada, H. Tajima, Y. Hamazaki, K. Tamura, “Dialog. H: A Highly Parallel Processor Based on Optical Common Bus,” in Technical Digest, COMPCON’83 (1983), pp. 461–467.
  5. M. Fraces et al., “A Multiprocessor Based on an Optical Crossbar Network: the MILORD Project,” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 223–231 (1988).
  6. The Transputer Databook (INMOS, 1989).
  7. Y. Kanayama, T. Fujii, N. Ohta, S. Ono, “Architecture and Performance of a Multicomputer Type Digital Signal Processing System “NOVI”,” Proc. ICASSP 4.5, 214–217 (1988).
  8. C. A. R. Hoare, occam2 Reference Manual (Prentice-Hall, Englewood Cliffs, NJ1988).
  9. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  10. The Transputer Applications Notebook, Architecture and Software (INMOS, 1989).

1988 (2)

M. Fraces et al., “A Multiprocessor Based on an Optical Crossbar Network: the MILORD Project,” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 223–231 (1988).

Y. Kanayama, T. Fujii, N. Ohta, S. Ono, “Architecture and Performance of a Multicomputer Type Digital Signal Processing System “NOVI”,” Proc. ICASSP 4.5, 214–217 (1988).

1984 (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

1983 (1)

Y. Okada, H. Tajima, Y. Hamazaki, K. Tamura, “Dialog. H: A Highly Parallel Processor Based on Optical Common Bus,” in Technical Digest, COMPCON’83 (1983), pp. 461–467.

1981 (1)

R. W. Keyes, “Fundamental Limits in Digital Information Processing,” Proc. IEEE 69, 267–278 (1981).
[Crossref]

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Fountain, T.

T. Fountain, Processor Arrays: Architecture and Applications (Academic, New York, 1987).

Fraces, M.

M. Fraces et al., “A Multiprocessor Based on an Optical Crossbar Network: the MILORD Project,” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 223–231 (1988).

Fujii, T.

Y. Kanayama, T. Fujii, N. Ohta, S. Ono, “Architecture and Performance of a Multicomputer Type Digital Signal Processing System “NOVI”,” Proc. ICASSP 4.5, 214–217 (1988).

Goodman, J. W.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

Hamazaki, Y.

Y. Okada, H. Tajima, Y. Hamazaki, K. Tamura, “Dialog. H: A Highly Parallel Processor Based on Optical Common Bus,” in Technical Digest, COMPCON’83 (1983), pp. 461–467.

Hoare, C. A. R.

C. A. R. Hoare, occam2 Reference Manual (Prentice-Hall, Englewood Cliffs, NJ1988).

Kanayama, Y.

Y. Kanayama, T. Fujii, N. Ohta, S. Ono, “Architecture and Performance of a Multicomputer Type Digital Signal Processing System “NOVI”,” Proc. ICASSP 4.5, 214–217 (1988).

Keyes, R. W.

R. W. Keyes, “Fundamental Limits in Digital Information Processing,” Proc. IEEE 69, 267–278 (1981).
[Crossref]

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

Ohta, N.

Y. Kanayama, T. Fujii, N. Ohta, S. Ono, “Architecture and Performance of a Multicomputer Type Digital Signal Processing System “NOVI”,” Proc. ICASSP 4.5, 214–217 (1988).

Okada, Y.

Y. Okada, H. Tajima, Y. Hamazaki, K. Tamura, “Dialog. H: A Highly Parallel Processor Based on Optical Common Bus,” in Technical Digest, COMPCON’83 (1983), pp. 461–467.

Ono, S.

Y. Kanayama, T. Fujii, N. Ohta, S. Ono, “Architecture and Performance of a Multicomputer Type Digital Signal Processing System “NOVI”,” Proc. ICASSP 4.5, 214–217 (1988).

Tajima, H.

Y. Okada, H. Tajima, Y. Hamazaki, K. Tamura, “Dialog. H: A Highly Parallel Processor Based on Optical Common Bus,” in Technical Digest, COMPCON’83 (1983), pp. 461–467.

Tamura, K.

Y. Okada, H. Tajima, Y. Hamazaki, K. Tamura, “Dialog. H: A Highly Parallel Processor Based on Optical Common Bus,” in Technical Digest, COMPCON’83 (1983), pp. 461–467.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Proc. ICASSP (1)

Y. Kanayama, T. Fujii, N. Ohta, S. Ono, “Architecture and Performance of a Multicomputer Type Digital Signal Processing System “NOVI”,” Proc. ICASSP 4.5, 214–217 (1988).

Proc. IEEE (2)

R. W. Keyes, “Fundamental Limits in Digital Information Processing,” Proc. IEEE 69, 267–278 (1981).
[Crossref]

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. Fraces et al., “A Multiprocessor Based on an Optical Crossbar Network: the MILORD Project,” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 223–231 (1988).

Technical Digest, COMPCON’83 (1)

Y. Okada, H. Tajima, Y. Hamazaki, K. Tamura, “Dialog. H: A Highly Parallel Processor Based on Optical Common Bus,” in Technical Digest, COMPCON’83 (1983), pp. 461–467.

Other (5)

The Transputer Databook (INMOS, 1989).

T. Fountain, Processor Arrays: Architecture and Applications (Academic, New York, 1987).

C. A. R. Hoare, occam2 Reference Manual (Prentice-Hall, Englewood Cliffs, NJ1988).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

The Transputer Applications Notebook, Architecture and Software (INMOS, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

System architecture of COSINE-1.

Fig. 2
Fig. 2

Schematic diagram of board-to-board interconnections employing (a) conventional electrical wiring and (b) free-space optical interconnection.

Fig. 3
Fig. 3

Analysis model of the collimated beam.

Fig. 4
Fig. 4

Relationship between diffraction loss and beam propagation length.

Fig. 5
Fig. 5

Relationship between crosstalk and beam propagation length.

Fig. 6
Fig. 6

Power distribution of a collimated beam emitted from a fabricated LED module.

Fig. 7
Fig. 7

Relationship between the propagation lengths and the losses other than diffraction loss.

Fig. 8
Fig. 8

Relationship between the propagation lengths and diffraction loss.

Fig. 9
Fig. 9

Structure of the optical interconnection section.

Fig. 10
Fig. 10

Fabricated optical interconnection section.

Fig. 11
Fig. 11

Set of the optical interconnection parts added to each processor board.

Fig. 12
Fig. 12

Output optical powers of the fabricated LED modules.

Fig. 13
Fig. 13

Optical power losses of the fabricated beam couplers.

Fig. 14
Fig. 14

Optical losses of the optical interconnection section in COSINE-1.

Fig. 15
Fig. 15

Optical power levels in the interconnection section of COSINE-1.

Fig. 16
Fig. 16

Error rate characteristic of the optical interconnection section.

Fig. 17
Fig. 17

Signal patterns of the optical interconnection section: (a) input and (b) output.

Fig. 18
Fig. 18

Relationship among R, S d , and diffraction loss when he beam propagation length L is 1 m and the crosstalk among the beams is 30 dB.

Tables (2)

Tables Icon

Table I Advantages of Free-Space Optical Interconnection and Targets of COSINE-1

Tables Icon

Table II Specifications of the Optical Interconnection Section

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P d ( r d ) = 0 | k L exp [ j π 2 - j k L ( 1 + r d 2 2 L 2 ) ] 0 R × exp ( - j k r s 2 2 L ) J 0 ( k r s r d L ) r s d r s | 2 D ( λ ) d λ ,
P e = 2 π 0 R r d P d ( r d ) d r d .
L s = - 10 log ( P e P 0 ) .
P c = 2 S d - R S d + R arc cos ( r d 2 + S d 2 - R 2 2 r d S d ) r d P d ( r d ) d r d .
C t = - 10 log ( P c P e ) .

Metrics