Abstract

A diode-laser driven all-optical iterative processor has been constructed and tested. Results are presented showing operation equivalent to a single channel of the cellular logic image processor architecture. Functional features of the circuit include optically programmable logic, thresholding, and data synchronization. Essential elements such as cascadability, logic-level restoration, and data feedback have been demonstrated with the optical processor controlled by a conventional electronic computer. Serial processing algorithms for word recognition, comparison, full addition, and subtraction have been implemented. Comments on the reliability of operation and future plans for expansion are made.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Wherrett, “All-Optical Computation—a Parallel Integrator Based on a Single Gate Full Adder,” Opt. Commun. 56, 86–92 (1985).
    [Crossref]
  2. F. A. P. Tooley, N. C. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realisation of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
    [Crossref]
  3. S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27–31 (1987).
    [Crossref]
  4. S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 45–52 (1987).
  5. R. G. A. Craig, G. S. Buller, F. A. P. Tooley, S. D. Smith, A. C. Walker, B. S. Wherrett, “All-Optical Programmable Logic Gate,” Appl. Opt. 29, 2148–2152 (1990).
    [Crossref] [PubMed]
  6. B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forcheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455–3464 (1984).
    [Crossref] [PubMed]
  7. F. A. B. McCormick et al., “A Digital Free Space Photonic Switching Network Demonstration using S-SEEDs,” in Post-deadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1990), paper CPDP1.
  8. E. Kerbis, T. J. Cloonan, F. B. McCormick, “An All-Optical Realization of a 2 × 1 Free-Space Switching Node,” IEEE Photon Technol. Lett. PTL-2, 8–10 (Aug.1990).
  9. M. E. Prise et al., “Module for Optical Logic Circuits Using Symmetric Self-Electrooptic Effect Devices,” Appl. Opt. 29, 2164–2170 (1990).
    [Crossref] [PubMed]
  10. M. J. B. Duff, T. J. Fountain, Cellular Logic Image Processing (Academic, New York, 1986).
  11. B. S. Wherrett, “Architectural Aspects of Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 769, 7–26 (1987).
  12. W. R. Babbit, J. A. Bell, R. G. A. Craig, M. W. Derstine, S. D. Smith, “Operation and Tolerancing of a Two Input Optical Programmable Logic Unit,” Opt. Photon. News, OSA FII2 (1990).
  13. E. Masseboeuf, O. Sahlen, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-Power Optical Bistability in Thermally Stable AlGaAs Etalons,” Appl. Phys. Lett. 54, 2290–2292 (1989).
    [Crossref]
  14. D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, “Integrated Quantum Well Self-Electro-Optic Effect Device: 2 × 2 Array of Optically Bistable Switches,” Appl. Phys. Lett. 49, 821–823 (1986).
    [Crossref]
  15. B. S. Wherrett, D. C. Hutchings, F. A. P. Tooley, Y. T. Chow, A. D. Lloyd, “Optical Computing Architectures Based on Nonlinear Interference Filter Technology,” Proc. Soc. Photo Opt. Instrum. Eng. 881, 2–11 (1987).
  16. A. C. Walker, “Reflection Bistable Etalons with Absorbed Transmission,” Opt. Commun. 59, 145–150 (1986).
    [Crossref]
  17. G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522 (1989).
    [Crossref]
  18. B. S. Wherrett, J. F. Snowdon, “Tolerance Studies for Digital Optical Computing Circuits with Application to Nonlinear Interference Filters,” Int. J. Opt. Comput. 1, 41–70 (1990).
  19. L. Zhang et al., “All-Optical Compare-and-Exchange Switches,” IEEE J. Selected Areas Commun. SAG-6, 1273–1279 (1988).
    [Crossref]
  20. K. S. Huang et al., “Implementation of a Prototype Digital Optical Cellular Image Processor (DOCIP),” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 687–694 (1988).
  21. B. S. Wherrett et al., “Construction and Tolerancing of an Optical-CLIP,” Proc. Soc. Photo-Opt. Instrum. Eng. 1215, 264–273 (1990).

1990 (6)

R. G. A. Craig, G. S. Buller, F. A. P. Tooley, S. D. Smith, A. C. Walker, B. S. Wherrett, “All-Optical Programmable Logic Gate,” Appl. Opt. 29, 2148–2152 (1990).
[Crossref] [PubMed]

E. Kerbis, T. J. Cloonan, F. B. McCormick, “An All-Optical Realization of a 2 × 1 Free-Space Switching Node,” IEEE Photon Technol. Lett. PTL-2, 8–10 (Aug.1990).

M. E. Prise et al., “Module for Optical Logic Circuits Using Symmetric Self-Electrooptic Effect Devices,” Appl. Opt. 29, 2164–2170 (1990).
[Crossref] [PubMed]

W. R. Babbit, J. A. Bell, R. G. A. Craig, M. W. Derstine, S. D. Smith, “Operation and Tolerancing of a Two Input Optical Programmable Logic Unit,” Opt. Photon. News, OSA FII2 (1990).

B. S. Wherrett, J. F. Snowdon, “Tolerance Studies for Digital Optical Computing Circuits with Application to Nonlinear Interference Filters,” Int. J. Opt. Comput. 1, 41–70 (1990).

B. S. Wherrett et al., “Construction and Tolerancing of an Optical-CLIP,” Proc. Soc. Photo-Opt. Instrum. Eng. 1215, 264–273 (1990).

1989 (2)

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522 (1989).
[Crossref]

E. Masseboeuf, O. Sahlen, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-Power Optical Bistability in Thermally Stable AlGaAs Etalons,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[Crossref]

1988 (2)

L. Zhang et al., “All-Optical Compare-and-Exchange Switches,” IEEE J. Selected Areas Commun. SAG-6, 1273–1279 (1988).
[Crossref]

K. S. Huang et al., “Implementation of a Prototype Digital Optical Cellular Image Processor (DOCIP),” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 687–694 (1988).

1987 (5)

B. S. Wherrett, D. C. Hutchings, F. A. P. Tooley, Y. T. Chow, A. D. Lloyd, “Optical Computing Architectures Based on Nonlinear Interference Filter Technology,” Proc. Soc. Photo Opt. Instrum. Eng. 881, 2–11 (1987).

B. S. Wherrett, “Architectural Aspects of Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 769, 7–26 (1987).

F. A. P. Tooley, N. C. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realisation of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[Crossref]

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27–31 (1987).
[Crossref]

S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 45–52 (1987).

1986 (2)

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, “Integrated Quantum Well Self-Electro-Optic Effect Device: 2 × 2 Array of Optically Bistable Switches,” Appl. Phys. Lett. 49, 821–823 (1986).
[Crossref]

A. C. Walker, “Reflection Bistable Etalons with Absorbed Transmission,” Opt. Commun. 59, 145–150 (1986).
[Crossref]

1985 (1)

B. S. Wherrett, “All-Optical Computation—a Parallel Integrator Based on a Single Gate Full Adder,” Opt. Commun. 56, 86–92 (1985).
[Crossref]

1984 (1)

Babbit, W. R.

W. R. Babbit, J. A. Bell, R. G. A. Craig, M. W. Derstine, S. D. Smith, “Operation and Tolerancing of a Two Input Optical Programmable Logic Unit,” Opt. Photon. News, OSA FII2 (1990).

Bell, J. A.

W. R. Babbit, J. A. Bell, R. G. A. Craig, M. W. Derstine, S. D. Smith, “Operation and Tolerancing of a Two Input Optical Programmable Logic Unit,” Opt. Photon. News, OSA FII2 (1990).

Buller, G. S.

R. G. A. Craig, G. S. Buller, F. A. P. Tooley, S. D. Smith, A. C. Walker, B. S. Wherrett, “All-Optical Programmable Logic Gate,” Appl. Opt. 29, 2148–2152 (1990).
[Crossref] [PubMed]

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522 (1989).
[Crossref]

Chow, Y. T.

B. S. Wherrett, D. C. Hutchings, F. A. P. Tooley, Y. T. Chow, A. D. Lloyd, “Optical Computing Architectures Based on Nonlinear Interference Filter Technology,” Proc. Soc. Photo Opt. Instrum. Eng. 881, 2–11 (1987).

Cloonan, T. J.

E. Kerbis, T. J. Cloonan, F. B. McCormick, “An All-Optical Realization of a 2 × 1 Free-Space Switching Node,” IEEE Photon Technol. Lett. PTL-2, 8–10 (Aug.1990).

Craft, N. C.

F. A. P. Tooley, N. C. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realisation of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[Crossref]

Craig, R. G. A.

W. R. Babbit, J. A. Bell, R. G. A. Craig, M. W. Derstine, S. D. Smith, “Operation and Tolerancing of a Two Input Optical Programmable Logic Unit,” Opt. Photon. News, OSA FII2 (1990).

R. G. A. Craig, G. S. Buller, F. A. P. Tooley, S. D. Smith, A. C. Walker, B. S. Wherrett, “All-Optical Programmable Logic Gate,” Appl. Opt. 29, 2148–2152 (1990).
[Crossref] [PubMed]

Derstine, M. W.

W. R. Babbit, J. A. Bell, R. G. A. Craig, M. W. Derstine, S. D. Smith, “Operation and Tolerancing of a Two Input Optical Programmable Logic Unit,” Opt. Photon. News, OSA FII2 (1990).

Duff, M. J. B.

M. J. B. Duff, T. J. Fountain, Cellular Logic Image Processing (Academic, New York, 1986).

English, J. H.

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, “Integrated Quantum Well Self-Electro-Optic Effect Device: 2 × 2 Array of Optically Bistable Switches,” Appl. Phys. Lett. 49, 821–823 (1986).
[Crossref]

Forcheimer, R.

Fountain, T. J.

M. J. B. Duff, T. J. Fountain, Cellular Logic Image Processing (Academic, New York, 1986).

Gossard, A. C.

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, “Integrated Quantum Well Self-Electro-Optic Effect Device: 2 × 2 Array of Optically Bistable Switches,” Appl. Phys. Lett. 49, 821–823 (1986).
[Crossref]

Henry, J. E.

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, “Integrated Quantum Well Self-Electro-Optic Effect Device: 2 × 2 Array of Optically Bistable Switches,” Appl. Phys. Lett. 49, 821–823 (1986).
[Crossref]

Huang, K. S.

K. S. Huang et al., “Implementation of a Prototype Digital Optical Cellular Image Processor (DOCIP),” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 687–694 (1988).

Hutchings, D. C.

B. S. Wherrett, D. C. Hutchings, F. A. P. Tooley, Y. T. Chow, A. D. Lloyd, “Optical Computing Architectures Based on Nonlinear Interference Filter Technology,” Proc. Soc. Photo Opt. Instrum. Eng. 881, 2–11 (1987).

Jenkins, B. K.

Kerbis, E.

E. Kerbis, T. J. Cloonan, F. B. McCormick, “An All-Optical Realization of a 2 × 1 Free-Space Switching Node,” IEEE Photon Technol. Lett. PTL-2, 8–10 (Aug.1990).

Landgren, G.

E. Masseboeuf, O. Sahlen, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-Power Optical Bistability in Thermally Stable AlGaAs Etalons,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[Crossref]

Lloyd, A. D.

B. S. Wherrett, D. C. Hutchings, F. A. P. Tooley, Y. T. Chow, A. D. Lloyd, “Optical Computing Architectures Based on Nonlinear Interference Filter Technology,” Proc. Soc. Photo Opt. Instrum. Eng. 881, 2–11 (1987).

Masseboeuf, E.

E. Masseboeuf, O. Sahlen, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-Power Optical Bistability in Thermally Stable AlGaAs Etalons,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[Crossref]

McCormick, F. A. B.

F. A. B. McCormick et al., “A Digital Free Space Photonic Switching Network Demonstration using S-SEEDs,” in Post-deadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1990), paper CPDP1.

McCormick, F. B.

E. Kerbis, T. J. Cloonan, F. B. McCormick, “An All-Optical Realization of a 2 × 1 Free-Space Switching Node,” IEEE Photon Technol. Lett. PTL-2, 8–10 (Aug.1990).

Miller, D. A. B.

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, “Integrated Quantum Well Self-Electro-Optic Effect Device: 2 × 2 Array of Optically Bistable Switches,” Appl. Phys. Lett. 49, 821–823 (1986).
[Crossref]

Nordell, N.

E. Masseboeuf, O. Sahlen, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-Power Optical Bistability in Thermally Stable AlGaAs Etalons,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[Crossref]

Olin, U.

E. Masseboeuf, O. Sahlen, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-Power Optical Bistability in Thermally Stable AlGaAs Etalons,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[Crossref]

Paton, C. R.

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522 (1989).
[Crossref]

Prise, M. E.

Rask, M.

E. Masseboeuf, O. Sahlen, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-Power Optical Bistability in Thermally Stable AlGaAs Etalons,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[Crossref]

Sahlen, O.

E. Masseboeuf, O. Sahlen, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-Power Optical Bistability in Thermally Stable AlGaAs Etalons,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[Crossref]

Sawchuk, A. A.

Smith, S. D.

R. G. A. Craig, G. S. Buller, F. A. P. Tooley, S. D. Smith, A. C. Walker, B. S. Wherrett, “All-Optical Programmable Logic Gate,” Appl. Opt. 29, 2148–2152 (1990).
[Crossref] [PubMed]

W. R. Babbit, J. A. Bell, R. G. A. Craig, M. W. Derstine, S. D. Smith, “Operation and Tolerancing of a Two Input Optical Programmable Logic Unit,” Opt. Photon. News, OSA FII2 (1990).

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522 (1989).
[Crossref]

F. A. P. Tooley, N. C. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realisation of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[Crossref]

S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 45–52 (1987).

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27–31 (1987).
[Crossref]

Snowdon, J. F.

B. S. Wherrett, J. F. Snowdon, “Tolerance Studies for Digital Optical Computing Circuits with Application to Nonlinear Interference Filters,” Int. J. Opt. Comput. 1, 41–70 (1990).

Soffer, B. H.

Strand, T. C.

Tooley, F. A. P.

R. G. A. Craig, G. S. Buller, F. A. P. Tooley, S. D. Smith, A. C. Walker, B. S. Wherrett, “All-Optical Programmable Logic Gate,” Appl. Opt. 29, 2148–2152 (1990).
[Crossref] [PubMed]

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27–31 (1987).
[Crossref]

F. A. P. Tooley, N. C. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realisation of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[Crossref]

B. S. Wherrett, D. C. Hutchings, F. A. P. Tooley, Y. T. Chow, A. D. Lloyd, “Optical Computing Architectures Based on Nonlinear Interference Filter Technology,” Proc. Soc. Photo Opt. Instrum. Eng. 881, 2–11 (1987).

Walker, A. C.

R. G. A. Craig, G. S. Buller, F. A. P. Tooley, S. D. Smith, A. C. Walker, B. S. Wherrett, “All-Optical Programmable Logic Gate,” Appl. Opt. 29, 2148–2152 (1990).
[Crossref] [PubMed]

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522 (1989).
[Crossref]

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27–31 (1987).
[Crossref]

A. C. Walker, “Reflection Bistable Etalons with Absorbed Transmission,” Opt. Commun. 59, 145–150 (1986).
[Crossref]

Wherrett, B. S.

B. S. Wherrett, J. F. Snowdon, “Tolerance Studies for Digital Optical Computing Circuits with Application to Nonlinear Interference Filters,” Int. J. Opt. Comput. 1, 41–70 (1990).

B. S. Wherrett et al., “Construction and Tolerancing of an Optical-CLIP,” Proc. Soc. Photo-Opt. Instrum. Eng. 1215, 264–273 (1990).

R. G. A. Craig, G. S. Buller, F. A. P. Tooley, S. D. Smith, A. C. Walker, B. S. Wherrett, “All-Optical Programmable Logic Gate,” Appl. Opt. 29, 2148–2152 (1990).
[Crossref] [PubMed]

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27–31 (1987).
[Crossref]

F. A. P. Tooley, N. C. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realisation of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[Crossref]

B. S. Wherrett, “Architectural Aspects of Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 769, 7–26 (1987).

B. S. Wherrett, D. C. Hutchings, F. A. P. Tooley, Y. T. Chow, A. D. Lloyd, “Optical Computing Architectures Based on Nonlinear Interference Filter Technology,” Proc. Soc. Photo Opt. Instrum. Eng. 881, 2–11 (1987).

B. S. Wherrett, “All-Optical Computation—a Parallel Integrator Based on a Single Gate Full Adder,” Opt. Commun. 56, 86–92 (1985).
[Crossref]

Zhang, L.

L. Zhang et al., “All-Optical Compare-and-Exchange Switches,” IEEE J. Selected Areas Commun. SAG-6, 1273–1279 (1988).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

E. Masseboeuf, O. Sahlen, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-Power Optical Bistability in Thermally Stable AlGaAs Etalons,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[Crossref]

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, “Integrated Quantum Well Self-Electro-Optic Effect Device: 2 × 2 Array of Optically Bistable Switches,” Appl. Phys. Lett. 49, 821–823 (1986).
[Crossref]

IEEE J. Selected Areas Commun. (1)

L. Zhang et al., “All-Optical Compare-and-Exchange Switches,” IEEE J. Selected Areas Commun. SAG-6, 1273–1279 (1988).
[Crossref]

IEEE Photon Technol. Lett. (1)

E. Kerbis, T. J. Cloonan, F. B. McCormick, “An All-Optical Realization of a 2 × 1 Free-Space Switching Node,” IEEE Photon Technol. Lett. PTL-2, 8–10 (Aug.1990).

Int. J. Opt. Comput. (1)

B. S. Wherrett, J. F. Snowdon, “Tolerance Studies for Digital Optical Computing Circuits with Application to Nonlinear Interference Filters,” Int. J. Opt. Comput. 1, 41–70 (1990).

Nature London (1)

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27–31 (1987).
[Crossref]

Opt. Commun. (4)

B. S. Wherrett, “All-Optical Computation—a Parallel Integrator Based on a Single Gate Full Adder,” Opt. Commun. 56, 86–92 (1985).
[Crossref]

F. A. P. Tooley, N. C. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realisation of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[Crossref]

A. C. Walker, “Reflection Bistable Etalons with Absorbed Transmission,” Opt. Commun. 59, 145–150 (1986).
[Crossref]

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522 (1989).
[Crossref]

Opt. Eng. (1)

S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 45–52 (1987).

Opt. Photon. News, OSA FII2 (1)

W. R. Babbit, J. A. Bell, R. G. A. Craig, M. W. Derstine, S. D. Smith, “Operation and Tolerancing of a Two Input Optical Programmable Logic Unit,” Opt. Photon. News, OSA FII2 (1990).

Proc. Soc. Photo Opt. Instrum. Eng. (1)

B. S. Wherrett, D. C. Hutchings, F. A. P. Tooley, Y. T. Chow, A. D. Lloyd, “Optical Computing Architectures Based on Nonlinear Interference Filter Technology,” Proc. Soc. Photo Opt. Instrum. Eng. 881, 2–11 (1987).

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

B. S. Wherrett, “Architectural Aspects of Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 769, 7–26 (1987).

K. S. Huang et al., “Implementation of a Prototype Digital Optical Cellular Image Processor (DOCIP),” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 687–694 (1988).

B. S. Wherrett et al., “Construction and Tolerancing of an Optical-CLIP,” Proc. Soc. Photo-Opt. Instrum. Eng. 1215, 264–273 (1990).

Other (2)

M. J. B. Duff, T. J. Fountain, Cellular Logic Image Processing (Academic, New York, 1986).

F. A. B. McCormick et al., “A Digital Free Space Photonic Switching Network Demonstration using S-SEEDs,” in Post-deadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1990), paper CPDP1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic of O-CLIP.

Fig. 2
Fig. 2

Hardware layout for the single channel CLIP circuit.

Fig. 3
Fig. 3

Hard-limiting latching response (power output vs signal input) required from optical gates for correct operation in the O-CLIP circuit.

Fig. 4
Fig. 4

Experimentally acquired optimization values. Solid squares indicate the data points collected, while solid circles indicate the calculated control levels. The corresponding valid operating region for each function is also shown.

Fig. 5
Fig. 5

Three gate optical lock-and-clocking.

Fig. 6
Fig. 6

Output traces showing all eight Boolean logic functions. The top trace in each block shows the output from G4; the second trace, the external binary input; the third trace, the output from PU1; and the fourth trace the output from PU2. Lock-and-clocking has not been enabled.

Fig. 7
Fig. 7

Sample run of test program on a single channel O-CLIP circuit.

Fig. 8
Fig. 8

State diagram for a pattern recognition algorithm.

Fig. 9
Fig. 9

Program run with O-CLIP programmed to recognize 55. The result bit from each byte operation has been highlighted for clarity. The input and output should be read left to right from LSB to MSB.

Fig. 10
Fig. 10

State diagram for the comparison algorithm.

Fig. 11
Fig. 11

State diagram for the simplified comparison algorithm incorporating the two’s complement conversion.

Fig. 12
Fig. 12

Various byte inputs and comparison results with the constant value 55. The resulting bits for each comparison have been highlighted for clarity. The input and output should be read left to right from LSB to MSB.

Fig. 13
Fig. 13

State diagram for the full addition algorithm.

Fig. 14
Fig. 14

O-CLIP run showing the result for the addition of the input byte 55(0 0 1 1 0 1 1 1) with the stored value 63 producing the result 118 (0 1 1 1 0 1 1 0). The input and output should be read left to right from LSB to MSB. Each input bit is repeated 3 times. The SUM bit for each operation has been solidly filled and the CARRY bit shaded for clarity.

Fig. 15
Fig. 15

State diagram for the subtraction algorithm.

Fig. 16
Fig. 16

O-CLIP run showing the result for the subtraction of the input byte 55 (0 0 1 1 0 1 1 1) with the stored value 63 producing the result −8 (1 1 1 1 1 0 0). In this case the final carry bit being 0 indicates an underflow condition meaning that the result is a two’s complement negative digital number. The input and output should be read left to right from LSB to MSB. Each input bit is repeated 3 times. The SUM bit for each operation has been solidly filled, and the CARRY bit is shaded for clarity.

Tables (7)

Tables Icon

Table I Expected Output for Recognizing the Word 55 In an Input Stream

Tables Icon

Table II Truth Table for the Full Addition Processa

Tables Icon

Table III Subtruth Table for Bi = 0

Tables Icon

Table IV Subtruth Table for Bi = 1

Tables Icon

Table V Subtruth Table for Sign Bit Addition Given Unsigned Integers (i.e., Asign = 0 and Bsign = 1)

Tables Icon

Table VI Carry Regeneration Given Bi = 0

Tables Icon

Table VII Carry Regeneration Given Bi = 1

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C 1 NAND = [ SET ( 1 , 1 ) 1 + maximum ( SET ( 0 , 1 ) 1 , SET ( 1 , 0 ) 1 ) ] / 2 , C 1 NOR = [ SET ( 0 , 0 ) 1 + minimum ( SET ( 0 , 1 ) 1 , SET ( 1 , 0 ) 1 ] / 2.
C 2 AND = [ SET ( 0 , 0 ) 3 + SET ( 1 , 1 ) 3 ] / 2 , C 2 XNOR = { minimum [ SET ( 1 , 0 ) 3 , SET ( 0 , 1 ) 3 ] + SET ( 0 , 0 ) 3 ] } / 2 , C 2 OR = [ SET ( 0 , 0 ) 4 + SET ( 1 , 1 ) 4 ] / 2 , C 2 XOR = { maximum [ SET ( 1 , 0 ) 4 , SET ( 0 , 1 ) 4 ] + SET ( 1 , 1 ) 4 } / 2 , C 2 NAND = { SET ( 1 , 1 ) 2 + maximum [ SET ( 1 , 0 ) 2 , SET ( 0 , 1 ) 2 ] } / 2 , C 2 NOR = { SET ( 0 , 0 ) 2 + minimum [ SET ( 1 , 0 ) 2 , SET ( 0 , 1 ) 2 ] } / 2.

Metrics