Abstract

A single-mode fiber is employed as a detector in a confocal scanning optical microscope (CSOM) instead of a pinhole and its optical property is studied. The optical system is always coherent, which is fundamentally different from the CSOM with a finite-sized pinhole. The coherent transfer function and the axial response are calculated. Experimentally, the coherent image is taken and the axial response is also measured.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Minsky, Microscopy Apparatus, U.S. Patent3,013,467 (19Dec.1961) (filed 7 Nov. 1957).
  2. T. Wilson, C. Sheppard, Theory and Practice of Scanning Microscopy (Academic, London, 1984).
  3. T. Wilson, Ed., Confocal Microscopy (Academic, London, 1990).
  4. T. Wilson, A. R. Carlini, “Size of the Detector in Confocal Imaging Systems,” Opt. Lett. 12, 227–229 (1987).
    [CrossRef] [PubMed]
  5. T. Wilson, A. R. Carlini, “Three-Dimensional Imaging in Confocal Imaging Systems with Finite Sized Detector,” J. Microsc. (Oxford) 149, 51–66 (1988).
    [CrossRef]
  6. S. Kimura, C. Munakata, “Dependence of 3-D Optical Transfer Functions on the Pinhole Radius in a Fluorescent Confocal Optical Microscope,” Appl. Opt. 29, 3007–3011 (1990).
    [CrossRef] [PubMed]
  7. T. Wilson, “Optical Sectioning in Confocal Fluorescent Microscopes,” J. Microsc. (Oxford) 154, 143–156 (1989).
    [CrossRef]
  8. S. Kimura, C. Munakata, “Three-Dimensional Optical Transfer Function for the Fluorescent Scanning Optical Microscope with a Slit,” Appl. Opt. 29, 1004–1007 (1990).
    [CrossRef] [PubMed]
  9. A. W. Synder, “Excitation and Scattering of Modes on a Dielectric or Optical Fiber,” IEEE, Trans. Microwave Theory Tech. MTT-17, 1138–1144 (1969).
    [CrossRef]
  10. K. F. Barrell, C. Pask, “Optical Fibre Excitation by Lenses,” Opt. Acta 26, 91–108 (1979).
    [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1986).
  12. T. Wilson, S. J. Hewlett, “Coherent Detection in Scanning Microscopes,” Inst. Phys. Conf. Ser. 98, 629–632 (1990).
  13. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  14. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).
  15. A. W. Snyder, “Understanding Monomode Optical Fibers,” Proc. IEEE 69, 6–13 (1981).
    [CrossRef]

1990

1989

T. Wilson, “Optical Sectioning in Confocal Fluorescent Microscopes,” J. Microsc. (Oxford) 154, 143–156 (1989).
[CrossRef]

1988

T. Wilson, A. R. Carlini, “Three-Dimensional Imaging in Confocal Imaging Systems with Finite Sized Detector,” J. Microsc. (Oxford) 149, 51–66 (1988).
[CrossRef]

1987

1981

A. W. Snyder, “Understanding Monomode Optical Fibers,” Proc. IEEE 69, 6–13 (1981).
[CrossRef]

1979

K. F. Barrell, C. Pask, “Optical Fibre Excitation by Lenses,” Opt. Acta 26, 91–108 (1979).
[CrossRef]

1969

A. W. Synder, “Excitation and Scattering of Modes on a Dielectric or Optical Fiber,” IEEE, Trans. Microwave Theory Tech. MTT-17, 1138–1144 (1969).
[CrossRef]

Barrell, K. F.

K. F. Barrell, C. Pask, “Optical Fibre Excitation by Lenses,” Opt. Acta 26, 91–108 (1979).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

Carlini, A. R.

T. Wilson, A. R. Carlini, “Three-Dimensional Imaging in Confocal Imaging Systems with Finite Sized Detector,” J. Microsc. (Oxford) 149, 51–66 (1988).
[CrossRef]

T. Wilson, A. R. Carlini, “Size of the Detector in Confocal Imaging Systems,” Opt. Lett. 12, 227–229 (1987).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1986).

Hewlett, S. J.

T. Wilson, S. J. Hewlett, “Coherent Detection in Scanning Microscopes,” Inst. Phys. Conf. Ser. 98, 629–632 (1990).

Kimura, S.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Minsky, M.

M. Minsky, Microscopy Apparatus, U.S. Patent3,013,467 (19Dec.1961) (filed 7 Nov. 1957).

Munakata, C.

Pask, C.

K. F. Barrell, C. Pask, “Optical Fibre Excitation by Lenses,” Opt. Acta 26, 91–108 (1979).
[CrossRef]

Sheppard, C.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Microscopy (Academic, London, 1984).

Snyder, A. W.

A. W. Snyder, “Understanding Monomode Optical Fibers,” Proc. IEEE 69, 6–13 (1981).
[CrossRef]

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Synder, A. W.

A. W. Synder, “Excitation and Scattering of Modes on a Dielectric or Optical Fiber,” IEEE, Trans. Microwave Theory Tech. MTT-17, 1138–1144 (1969).
[CrossRef]

Wilson, T.

T. Wilson, S. J. Hewlett, “Coherent Detection in Scanning Microscopes,” Inst. Phys. Conf. Ser. 98, 629–632 (1990).

T. Wilson, “Optical Sectioning in Confocal Fluorescent Microscopes,” J. Microsc. (Oxford) 154, 143–156 (1989).
[CrossRef]

T. Wilson, A. R. Carlini, “Three-Dimensional Imaging in Confocal Imaging Systems with Finite Sized Detector,” J. Microsc. (Oxford) 149, 51–66 (1988).
[CrossRef]

T. Wilson, A. R. Carlini, “Size of the Detector in Confocal Imaging Systems,” Opt. Lett. 12, 227–229 (1987).
[CrossRef] [PubMed]

T. Wilson, C. Sheppard, Theory and Practice of Scanning Microscopy (Academic, London, 1984).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

Appl. Opt.

IEEE, Trans. Microwave Theory Tech.

A. W. Synder, “Excitation and Scattering of Modes on a Dielectric or Optical Fiber,” IEEE, Trans. Microwave Theory Tech. MTT-17, 1138–1144 (1969).
[CrossRef]

Inst. Phys. Conf. Ser.

T. Wilson, S. J. Hewlett, “Coherent Detection in Scanning Microscopes,” Inst. Phys. Conf. Ser. 98, 629–632 (1990).

J. Microsc. (Oxford)

T. Wilson, A. R. Carlini, “Three-Dimensional Imaging in Confocal Imaging Systems with Finite Sized Detector,” J. Microsc. (Oxford) 149, 51–66 (1988).
[CrossRef]

T. Wilson, “Optical Sectioning in Confocal Fluorescent Microscopes,” J. Microsc. (Oxford) 154, 143–156 (1989).
[CrossRef]

Opt. Acta

K. F. Barrell, C. Pask, “Optical Fibre Excitation by Lenses,” Opt. Acta 26, 91–108 (1979).
[CrossRef]

Opt. Lett.

Proc. IEEE

A. W. Snyder, “Understanding Monomode Optical Fibers,” Proc. IEEE 69, 6–13 (1981).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1986).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

M. Minsky, Microscopy Apparatus, U.S. Patent3,013,467 (19Dec.1961) (filed 7 Nov. 1957).

T. Wilson, C. Sheppard, Theory and Practice of Scanning Microscopy (Academic, London, 1984).

T. Wilson, Ed., Confocal Microscopy (Academic, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the confocal scanning optical microscope with single-mode optical fiber.

Fig. 2
Fig. 2

Variations of pupil fund ion affected by the fiber. The waveguide parameter V is 2.4.

Fig. 3
Fig. 3

Coherent transfer functions for the CSOM with the fiber: (a) waveguide parameter V is 2.4 and the normalized radius vc is altered for each variation; (b) waveguide parameter V is 1.45 and the normalized radius vc is altered for each variation.

Fig. 4
Fig. 4

Images using the CSOM with (a) the fiber of V = 1.45 and (b) a pinhole radius of 10 μm. The lens numerical aperture is 0.02.

Fig. 5
Fig. 5

Coherent image by the CSOM using a lens of 0.65 numerical aperture. The waveguide parameter V is 1.45.

Fig. 6
Fig. 6

Images using the scanning microscope with (a) a 10-μm pinhole (confocal) and (b) a large area detector (conventional). The specimen is the same as in Fig. 3.

Fig. 7
Fig. 7

(a) Relative axial responses for the CSOM with the waveguide parameter V = 2.4. The normalized radius is altered. (b) Axial responses normalized by the values at u = 0.

Fig. 8
Fig. 8

Launching power dependence of the CSOM with the fiber on the normalized core radius. The waveguide parameter V is changed from 1.05 to 2.4.

Fig. 9
Fig. 9

Axial responses for the CSOM maximizing the launching power. The waveguide parameters used for the calculation are 1.05 and 2.4, respectively. The dotted line is for the case of a small pinhole.

Fig. 10
Fig. 10

Point spread functions for the CSOM maximizing the launching power. The waveguide parameters used for the calculation are 1.05 and 2.4 and both gave results indistinguishable from the full line. The dotted line is for the case of a small pinhole.

Fig. 11
Fig. 11

Launching power variation against the numerical aperture of the lens of the CSOM. The waveguide parameter V used for the calculation is 1.45.

Fig. 12
Fig. 12

Axial responses measured for the CSOM with a waveguide parameter of 1.45. The lens numerical aperture is (a) 0.02, (b) 0.07, and (c) 0.1. Each photograph also shows the narrower responses for a small pinhole.

Fig. 13
Fig. 13

Simulations for axial response measurements.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

U = p a p · e p ,
I = a 1 2 = | - + - + U · e 1 d S | 2 ,
U ( t s , w s , t d , w d ) = - + - + h 1 ( t 0 , w 0 ) t ( t s - t 0 , w s - w 0 ) h 2 × ( t 0 - t d , w 0 - w d ) d t 0 d w 0 ,
t = 2 π λ x sin α ,
t d = 2 π λ x d sin β ;             w d = 2 π λ y d sin β .
a 1 ( t s , w s ) = - + - + - + - + h 1 ( t 0 , w 0 ) t ( t s - t 0 , w s - w 0 ) × h 2 ( t 0 - t d , w 0 - w d ) e 1 ( t d , w d ) d t 0 d w 0 d t d d w d ,
h 2 eff ( t 0 , w 0 ) = - + - + h 2 ( t 0 - t d , w 0 - w d ) e 1 ( t d , w d ) d t d d w d ,
I = h 1 h 2 eff t 2 ,
P 2 eff = P 2 · E 1 ,
P 2 eff ( ρ ) ~ [ v c ρ J 1 ( v c ρ ) - J 0 ( v c ρ ) G ( U ) ] [ ( v c ρ ) 2 - U 2 ] [ ( v c ρ ) 2 + W 2 ] ,             ( 0 < ρ < 1 ) ,
v c = 2 π λ r c sin β ,
G ( U ) = U J 1 ( U ) J 0 ( U ) .
P 2 eff ( ρ ) ~ J 0 ( U ) 2 V 2 { 1 + [ J 1 ( U ) J 0 ( U ) ] 2 } ,
c ( m ) = P 1 P 2 eff ( m ) ,
u = 8 π λ z sin 2 ( α 2 ) .
I ( u ) = c ( 0 ) 2 = | 0 1 P 1 ( ρ ) P 2 eff ( ρ ) ρ d ρ 2 ,
I ( u ) = ( sin u 2 u 2 ) 2 .
I = h 2 eff h 1 2 f ,

Metrics