Abstract

National attention has focused on the critical problem of detecting and avoiding windshear since the crash on 2 Aug. 1985 of a Lockheed L-1011 at Dallas/Fort Worth International Airport. As part of the NASA/FAA National Integrated Windshear Program, we have defined a measurable windshear hazard index that can be remotely sensed from an aircraft, to give the pilot information about the wind conditions he will experience at some later time if he continues along the present flight path. A technology analysis and end-to-end performance simulation measuring signal-to-noise ratios and resulting wind velocity errors for competing coherent laser radar (lidar) systems have been carried out. The results show that a Ho:YAG lidar at a wavelength of 2.1 μm and a CO2 lidar at 10.6 μm can give the pilot information about the line-of-sight component of a windshear threat from his present position to a region extending 2–4 km in front of the aircraft. This constitutes a warning time of 20–40 s, even in conditions of moderately heavy precipitation. Using these results, a Coherent Lidar Airborne Shear Sensor (CLASS) that uses a Q-switched CO2 laser at 10.6 μm is being designed and developed for flight evaluation in the fall of 1991.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Wilson, R. D. Roberts, C. Kessinger, J. McCarthy, “Microburst Wind Structure and Evaluation of Doppler Radar for Airport Wind Shear Detection,” J. Climate Appl. Meteorol. 23, 898–915 (1984); National Research Council, Low-Altitude Wind Shear and Its Hazard to Aviation (National Academy Press, Washington, DC, 1983).
    [Crossref]
  2. Federal Aviation Administration “Windshear Training Aid,” example Windshear training program (Nov.1986).
  3. W. Frost, R. L. Bowles, “Incorporation of Wind Shear Terms into the Governing uations of Aircraft Motion,” presented at AIAA Twenty-Second Aerospace Sciences Meeting, AIAA-84-0275 (Jan. 1984).
  4. P. Rabinowitz, S. Jacobs, R. Targ, G. Gould, “Homodyne Detection of Phase Modulated Light,” Proc. IRE 50, 2365 (1962).
  5. R. M. Huffaker, “Laser Doppler Detection Systems for Gas Velocity Measurement,” Appl. Opt. 9, 1026–1039 (1970).
    [Crossref] [PubMed]
  6. C. DiMarzio, C. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed Laser Doppler Measurements of Wind Shear,” Bull. Am. Meteorol. Soc. 60, 1061–1066 (1979); J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533–542 (1980); J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984); J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler Lidar Measurements,” Appl. Opt. 25, 3925–3960 (1986).
    [Crossref]
  7. A. A. Woodfield, J. M. Vaughan, “Airspeed and Wind Shear Measurements With an Airborne CO2 CW Laser,” Int. J. Aviat. Saf. 1, 129–224 (1983).
  8. F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, B. F. Weber, “Wind Measurement Accuracy of the NOAA Pulsed Infrared Doppler Lidar,” Appl. Opt. 23, 2503–2506 (1984); R. M. Hardesty, R. E. Cupp, M. J. Post, T. R. Lawrence, “A Ground-Based, Injection-Locked, Pulsed TEA Laser for Atmospheric Wind Measurements,” Proc. Soc. Photo-Opt. Instrum. Eng. 889, 23–28 (1988).
    [Crossref] [PubMed]
  9. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote Wind Profiling with a Solid-State Nd:YAG Coherent Lidar System,” Opt. Lett. 14, 776–778 (1989).
    [Crossref] [PubMed]
  10. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from the Atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
    [Crossref] [PubMed]
  11. R. G. Frehlich, M. J. Kavaya, “Coherent Laser Radar Performance for General Conditions,” Appl. Opt. (1991), accepted for publication.
    [Crossref] [PubMed]
  12. F. H. Proctor, “The Terminal Area Simulation System,” NASA Contract. Rep. 4046 (Vol. I) and 4047 (Vol. II), DOT/FAA/PM-86-50 (1987).
  13. J. D. Marshall, W. McK. Palmer, “The Distribution of Raindrops with Size,” J. Meteorol. 5, 165–166 (1948).
    [Crossref]
  14. L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [Crossref] [PubMed]
  15. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972); G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” AFGL-TR-86-0110 (May1986).
  16. E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, 1976), pp. 89–90.
  17. T. S. Chu, D. C. Hogg, “Effects of Precipitation on Propagation at 0.63, 3.5, and 10.6 Microns,” Bell Syst. Tech. J. 47, 723–759 (1968).
  18. V. E. Zuev, Laser Beams in the Atmosphere (Consultants Bureau, New York, 1982).
    [Crossref]
  19. C. C. Chen, “A Correction for Middleton’s Visible and Infrared Radiation Extinction Coefficients Due to Rain,” The Rand Corp. Report R-1523-PR (1974).
  20. D. B. Rensch, R. K. Long, “Comparative Studies of Extinction and Backscattering by Aerosols, Fog, and Rain at 10.6 Am and 0.63 μm,” Appl. Opt. 9, 1563–1573 (1970).
    [Crossref] [PubMed]
  21. V. Chimelis, “Extinction of CO2 Laser Radiation by Fog and Rain,” Appl. Opt. 21, 3367–3372 (1982).
    [Crossref] [PubMed]
  22. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442–2446 (1982).
    [Crossref] [PubMed]
  23. R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric Aerosol Backscatter Measurements Using a Tunable Coherent CO2 Lidar,” Appl. Opt. 23, 2510–2517 (1984).
    [Crossref] [PubMed]
  24. R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright, W. Pi, “Altitude and Seasonal Characteristics of Aerosol Backscatter at Thermal Infrared Wavelengths Using Lidar Observations from Coastal California,” J. Geophys. Res. 94, 9897–9908 (1989).
    [Crossref]
  25. G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modeling Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths. 1: Aerosol Properties, Modeling Techniques, and Associated Problems,” Appl. Opt. 22, 1655–1665 (1983).
    [Crossref] [PubMed]
  26. F. J. Pratt, R. M. Huffaker, T. R. Lawrence, R. Loveland, “System Considerations of a Long Range Coherent Lidar Wind Sensor with Particular Emphasis on Real Weather Effects,” NOAA Tech. Memo., ERL WPL-42 (1979).
  27. R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Memo., ERL WPL-37 (1978).
  28. J. A. Thomson, F. P. Boynton, “Development of Design Procedures for Coherent Lidar Measurements of Atmospheric Winds,” Final Report on Contract NOAA-03-7-022-35106, Physical Dynamics, Inc., Berkeley, CA, report PD-B-77-137 (June1977, revised Sept. 1977, Nov. 1977, and Jan. 1978).
  29. H. L. Van Trees, Detection, Estimation, and Modulation Theory. Part I. Detection, Estimation, and Linear Modulation Theory (Wiley, New York, 1968).
  30. D. S. Zrnic, “Estimation of Spectral Moments for Weather Echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979).
    [Crossref]
  31. P. R. Mahapatra, D. S. Zrnic, “Practical Algorithms for Mean Velocity Estimation in Pulse Doppler Weather Radars Using a Small Number of Samples,” IEEE Trans. Geosci. Remote Sensing GE-21, 491–501 (1983).
    [Crossref]
  32. R. W. Lee, K. A. Lee, “A Poly-Pulse-Pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting On Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, DC, 1980).

1989 (2)

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote Wind Profiling with a Solid-State Nd:YAG Coherent Lidar System,” Opt. Lett. 14, 776–778 (1989).
[Crossref] [PubMed]

R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright, W. Pi, “Altitude and Seasonal Characteristics of Aerosol Backscatter at Thermal Infrared Wavelengths Using Lidar Observations from Coastal California,” J. Geophys. Res. 94, 9897–9908 (1989).
[Crossref]

1987 (1)

1986 (1)

Federal Aviation Administration “Windshear Training Aid,” example Windshear training program (Nov.1986).

1984 (3)

1983 (3)

P. R. Mahapatra, D. S. Zrnic, “Practical Algorithms for Mean Velocity Estimation in Pulse Doppler Weather Radars Using a Small Number of Samples,” IEEE Trans. Geosci. Remote Sensing GE-21, 491–501 (1983).
[Crossref]

G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modeling Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths. 1: Aerosol Properties, Modeling Techniques, and Associated Problems,” Appl. Opt. 22, 1655–1665 (1983).
[Crossref] [PubMed]

A. A. Woodfield, J. M. Vaughan, “Airspeed and Wind Shear Measurements With an Airborne CO2 CW Laser,” Int. J. Aviat. Saf. 1, 129–224 (1983).

1982 (2)

1979 (3)

C. DiMarzio, C. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed Laser Doppler Measurements of Wind Shear,” Bull. Am. Meteorol. Soc. 60, 1061–1066 (1979); J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533–542 (1980); J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984); J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler Lidar Measurements,” Appl. Opt. 25, 3925–3960 (1986).
[Crossref]

F. J. Pratt, R. M. Huffaker, T. R. Lawrence, R. Loveland, “System Considerations of a Long Range Coherent Lidar Wind Sensor with Particular Emphasis on Real Weather Effects,” NOAA Tech. Memo., ERL WPL-42 (1979).

D. S. Zrnic, “Estimation of Spectral Moments for Weather Echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979).
[Crossref]

1972 (1)

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972); G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” AFGL-TR-86-0110 (May1986).

1971 (1)

1970 (2)

1968 (1)

T. S. Chu, D. C. Hogg, “Effects of Precipitation on Propagation at 0.63, 3.5, and 10.6 Microns,” Bell Syst. Tech. J. 47, 723–759 (1968).

1962 (1)

P. Rabinowitz, S. Jacobs, R. Targ, G. Gould, “Homodyne Detection of Phase Modulated Light,” Proc. IRE 50, 2365 (1962).

1948 (1)

J. D. Marshall, W. McK. Palmer, “The Distribution of Raindrops with Size,” J. Meteorol. 5, 165–166 (1948).
[Crossref]

Ancellet, G. M.

R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright, W. Pi, “Altitude and Seasonal Characteristics of Aerosol Backscatter at Thermal Infrared Wavelengths Using Lidar Observations from Coastal California,” J. Geophys. Res. 94, 9897–9908 (1989).
[Crossref]

Bilbro, J. W.

C. DiMarzio, C. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed Laser Doppler Measurements of Wind Shear,” Bull. Am. Meteorol. Soc. 60, 1061–1066 (1979); J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533–542 (1980); J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984); J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler Lidar Measurements,” Appl. Opt. 25, 3925–3960 (1986).
[Crossref]

Bowles, R. L.

W. Frost, R. L. Bowles, “Incorporation of Wind Shear Terms into the Governing uations of Aircraft Motion,” presented at AIAA Twenty-Second Aerospace Sciences Meeting, AIAA-84-0275 (Jan. 1984).

Boynton, F. P.

J. A. Thomson, F. P. Boynton, “Development of Design Procedures for Coherent Lidar Measurements of Atmospheric Winds,” Final Report on Contract NOAA-03-7-022-35106, Physical Dynamics, Inc., Berkeley, CA, report PD-B-77-137 (June1977, revised Sept. 1977, Nov. 1977, and Jan. 1978).

Burnham, D. C.

C. DiMarzio, C. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed Laser Doppler Measurements of Wind Shear,” Bull. Am. Meteorol. Soc. 60, 1061–1066 (1979); J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533–542 (1980); J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984); J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler Lidar Measurements,” Appl. Opt. 25, 3925–3960 (1986).
[Crossref]

Chen, C. C.

C. C. Chen, “A Correction for Middleton’s Visible and Infrared Radiation Extinction Coefficients Due to Rain,” The Rand Corp. Report R-1523-PR (1974).

Chimelis, V.

Chu, T. S.

T. S. Chu, D. C. Hogg, “Effects of Precipitation on Propagation at 0.63, 3.5, and 10.6 Microns,” Bell Syst. Tech. J. 47, 723–759 (1968).

Deepak, A.

DiMarzio, C.

C. DiMarzio, C. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed Laser Doppler Measurements of Wind Shear,” Bull. Am. Meteorol. Soc. 60, 1061–1066 (1979); J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533–542 (1980); J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984); J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler Lidar Measurements,” Appl. Opt. 25, 3925–3960 (1986).
[Crossref]

Farrukh, U. O.

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972); G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” AFGL-TR-86-0110 (May1986).

Flamant, P. H.

Frehlich, R. G.

R. G. Frehlich, M. J. Kavaya, “Coherent Laser Radar Performance for General Conditions,” Appl. Opt. (1991), accepted for publication.
[Crossref] [PubMed]

Frost, W.

W. Frost, R. L. Bowles, “Incorporation of Wind Shear Terms into the Governing uations of Aircraft Motion,” presented at AIAA Twenty-Second Aerospace Sciences Meeting, AIAA-84-0275 (Jan. 1984).

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972); G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” AFGL-TR-86-0110 (May1986).

Gould, G.

P. Rabinowitz, S. Jacobs, R. Targ, G. Gould, “Homodyne Detection of Phase Modulated Light,” Proc. IRE 50, 2365 (1962).

Hale, C. P.

Hall, F. F.

Hallock, J. N.

C. DiMarzio, C. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed Laser Doppler Measurements of Wind Shear,” Bull. Am. Meteorol. Soc. 60, 1061–1066 (1979); J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533–542 (1980); J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984); J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler Lidar Measurements,” Appl. Opt. 25, 3925–3960 (1986).
[Crossref]

Haner, D. A.

Hardesty, R. M.

Harris, C.

C. DiMarzio, C. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed Laser Doppler Measurements of Wind Shear,” Bull. Am. Meteorol. Soc. 60, 1061–1066 (1979); J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533–542 (1980); J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984); J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler Lidar Measurements,” Appl. Opt. 25, 3925–3960 (1986).
[Crossref]

Henderson, S. W.

Hogg, D. C.

T. S. Chu, D. C. Hogg, “Effects of Precipitation on Propagation at 0.63, 3.5, and 10.6 Microns,” Bell Syst. Tech. J. 47, 723–759 (1968).

Horrigan, F. A.

Huffaker, R. M.

Jackson, M. E.

Jacobs, S.

P. Rabinowitz, S. Jacobs, R. Targ, G. Gould, “Homodyne Detection of Phase Modulated Light,” Proc. IRE 50, 2365 (1962).

Kavaya, M. J.

Kent, G. S.

Kessinger, C.

J. W. Wilson, R. D. Roberts, C. Kessinger, J. McCarthy, “Microburst Wind Structure and Evaluation of Doppler Radar for Airport Wind Shear Detection,” J. Climate Appl. Meteorol. 23, 898–915 (1984); National Research Council, Low-Altitude Wind Shear and Its Hazard to Aviation (National Academy Press, Washington, DC, 1983).
[Crossref]

Lawrence, T. R.

Lee, K. A.

R. W. Lee, K. A. Lee, “A Poly-Pulse-Pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting On Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, DC, 1980).

Lee, R. W.

R. W. Lee, K. A. Lee, “A Poly-Pulse-Pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting On Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, DC, 1980).

Long, R. K.

Loveland, R.

F. J. Pratt, R. M. Huffaker, T. R. Lawrence, R. Loveland, “System Considerations of a Long Range Coherent Lidar Wind Sensor with Particular Emphasis on Real Weather Effects,” NOAA Tech. Memo., ERL WPL-42 (1979).

Magee, J. R.

Mahapatra, P. R.

P. R. Mahapatra, D. S. Zrnic, “Practical Algorithms for Mean Velocity Estimation in Pulse Doppler Weather Radars Using a Small Number of Samples,” IEEE Trans. Geosci. Remote Sensing GE-21, 491–501 (1983).
[Crossref]

Marshall, J. D.

J. D. Marshall, W. McK. Palmer, “The Distribution of Raindrops with Size,” J. Meteorol. 5, 165–166 (1948).
[Crossref]

McCarthy, J.

J. W. Wilson, R. D. Roberts, C. Kessinger, J. McCarthy, “Microburst Wind Structure and Evaluation of Doppler Radar for Airport Wind Shear Detection,” J. Climate Appl. Meteorol. 23, 898–915 (1984); National Research Council, Low-Altitude Wind Shear and Its Hazard to Aviation (National Academy Press, Washington, DC, 1983).
[Crossref]

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972); G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” AFGL-TR-86-0110 (May1986).

Menzies, R. T.

R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright, W. Pi, “Altitude and Seasonal Characteristics of Aerosol Backscatter at Thermal Infrared Wavelengths Using Lidar Observations from Coastal California,” J. Geophys. Res. 94, 9897–9908 (1989).
[Crossref]

R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric Aerosol Backscatter Measurements Using a Tunable Coherent CO2 Lidar,” Appl. Opt. 23, 2510–2517 (1984).
[Crossref] [PubMed]

Palmer, W. McK.

J. D. Marshall, W. McK. Palmer, “The Distribution of Raindrops with Size,” J. Meteorol. 5, 165–166 (1948).
[Crossref]

Pi, W.

R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright, W. Pi, “Altitude and Seasonal Characteristics of Aerosol Backscatter at Thermal Infrared Wavelengths Using Lidar Observations from Coastal California,” J. Geophys. Res. 94, 9897–9908 (1989).
[Crossref]

Post, M. J.

Pratt, F. J.

F. J. Pratt, R. M. Huffaker, T. R. Lawrence, R. Loveland, “System Considerations of a Long Range Coherent Lidar Wind Sensor with Particular Emphasis on Real Weather Effects,” NOAA Tech. Memo., ERL WPL-42 (1979).

Proctor, F. H.

F. H. Proctor, “The Terminal Area Simulation System,” NASA Contract. Rep. 4046 (Vol. I) and 4047 (Vol. II), DOT/FAA/PM-86-50 (1987).

Rabinowitz, P.

P. Rabinowitz, S. Jacobs, R. Targ, G. Gould, “Homodyne Detection of Phase Modulated Light,” Proc. IRE 50, 2365 (1962).

Rensch, D. B.

Richter, R. A.

Roberts, R. D.

J. W. Wilson, R. D. Roberts, C. Kessinger, J. McCarthy, “Microburst Wind Structure and Evaluation of Doppler Radar for Airport Wind Shear Detection,” J. Climate Appl. Meteorol. 23, 898–915 (1984); National Research Council, Low-Altitude Wind Shear and Its Hazard to Aviation (National Academy Press, Washington, DC, 1983).
[Crossref]

Rothman, L. S.

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972); G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” AFGL-TR-86-0110 (May1986).

Sonnenschein, C. M.

Targ, R.

P. Rabinowitz, S. Jacobs, R. Targ, G. Gould, “Homodyne Detection of Phase Modulated Light,” Proc. IRE 50, 2365 (1962).

Thomson, J. A.

J. A. Thomson, F. P. Boynton, “Development of Design Procedures for Coherent Lidar Measurements of Atmospheric Winds,” Final Report on Contract NOAA-03-7-022-35106, Physical Dynamics, Inc., Berkeley, CA, report PD-B-77-137 (June1977, revised Sept. 1977, Nov. 1977, and Jan. 1978).

Tratt, D. M.

R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright, W. Pi, “Altitude and Seasonal Characteristics of Aerosol Backscatter at Thermal Infrared Wavelengths Using Lidar Observations from Coastal California,” J. Geophys. Res. 94, 9897–9908 (1989).
[Crossref]

Van Trees, H. L.

H. L. Van Trees, Detection, Estimation, and Modulation Theory. Part I. Detection, Estimation, and Linear Modulation Theory (Wiley, New York, 1968).

Vaughan, J. M.

A. A. Woodfield, J. M. Vaughan, “Airspeed and Wind Shear Measurements With an Airborne CO2 CW Laser,” Int. J. Aviat. Saf. 1, 129–224 (1983).

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972); G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” AFGL-TR-86-0110 (May1986).

Weaver, E. A.

C. DiMarzio, C. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed Laser Doppler Measurements of Wind Shear,” Bull. Am. Meteorol. Soc. 60, 1061–1066 (1979); J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533–542 (1980); J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984); J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler Lidar Measurements,” Appl. Opt. 25, 3925–3960 (1986).
[Crossref]

Weber, B. F.

Wilson, J. W.

J. W. Wilson, R. D. Roberts, C. Kessinger, J. McCarthy, “Microburst Wind Structure and Evaluation of Doppler Radar for Airport Wind Shear Detection,” J. Climate Appl. Meteorol. 23, 898–915 (1984); National Research Council, Low-Altitude Wind Shear and Its Hazard to Aviation (National Academy Press, Washington, DC, 1983).
[Crossref]

Woodfield, A. A.

A. A. Woodfield, J. M. Vaughan, “Airspeed and Wind Shear Measurements With an Airborne CO2 CW Laser,” Int. J. Aviat. Saf. 1, 129–224 (1983).

Wright, J. C.

R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright, W. Pi, “Altitude and Seasonal Characteristics of Aerosol Backscatter at Thermal Infrared Wavelengths Using Lidar Observations from Coastal California,” J. Geophys. Res. 94, 9897–9908 (1989).
[Crossref]

Wurtele, M. G.

R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright, W. Pi, “Altitude and Seasonal Characteristics of Aerosol Backscatter at Thermal Infrared Wavelengths Using Lidar Observations from Coastal California,” J. Geophys. Res. 94, 9897–9908 (1989).
[Crossref]

Yue, G. K.

Zrnic, D. S.

P. R. Mahapatra, D. S. Zrnic, “Practical Algorithms for Mean Velocity Estimation in Pulse Doppler Weather Radars Using a Small Number of Samples,” IEEE Trans. Geosci. Remote Sensing GE-21, 491–501 (1983).
[Crossref]

D. S. Zrnic, “Estimation of Spectral Moments for Weather Echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979).
[Crossref]

Zuev, V. E.

V. E. Zuev, Laser Beams in the Atmosphere (Consultants Bureau, New York, 1982).
[Crossref]

AFCRL-72-0497 (1)

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972); G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” AFGL-TR-86-0110 (May1986).

Appl. Opt. (9)

C. M. Sonnenschein, F. A. Horrigan, “Signal-to-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from the Atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
[Crossref] [PubMed]

L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
[Crossref] [PubMed]

R. M. Huffaker, “Laser Doppler Detection Systems for Gas Velocity Measurement,” Appl. Opt. 9, 1026–1039 (1970).
[Crossref] [PubMed]

F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, B. F. Weber, “Wind Measurement Accuracy of the NOAA Pulsed Infrared Doppler Lidar,” Appl. Opt. 23, 2503–2506 (1984); R. M. Hardesty, R. E. Cupp, M. J. Post, T. R. Lawrence, “A Ground-Based, Injection-Locked, Pulsed TEA Laser for Atmospheric Wind Measurements,” Proc. Soc. Photo-Opt. Instrum. Eng. 889, 23–28 (1988).
[Crossref] [PubMed]

D. B. Rensch, R. K. Long, “Comparative Studies of Extinction and Backscattering by Aerosols, Fog, and Rain at 10.6 Am and 0.63 μm,” Appl. Opt. 9, 1563–1573 (1970).
[Crossref] [PubMed]

V. Chimelis, “Extinction of CO2 Laser Radiation by Fog and Rain,” Appl. Opt. 21, 3367–3372 (1982).
[Crossref] [PubMed]

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442–2446 (1982).
[Crossref] [PubMed]

R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric Aerosol Backscatter Measurements Using a Tunable Coherent CO2 Lidar,” Appl. Opt. 23, 2510–2517 (1984).
[Crossref] [PubMed]

G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modeling Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths. 1: Aerosol Properties, Modeling Techniques, and Associated Problems,” Appl. Opt. 22, 1655–1665 (1983).
[Crossref] [PubMed]

Bell Syst. Tech. J. (1)

T. S. Chu, D. C. Hogg, “Effects of Precipitation on Propagation at 0.63, 3.5, and 10.6 Microns,” Bell Syst. Tech. J. 47, 723–759 (1968).

Bull. Am. Meteorol. Soc. (1)

C. DiMarzio, C. Harris, J. W. Bilbro, E. A. Weaver, D. C. Burnham, J. N. Hallock, “Pulsed Laser Doppler Measurements of Wind Shear,” Bull. Am. Meteorol. Soc. 60, 1061–1066 (1979); J. W. Bilbro, “Atmospheric Laser Doppler Velocimetry: an Overview,” Opt. Eng. 19, 533–542 (1980); J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984); J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler Lidar Measurements,” Appl. Opt. 25, 3925–3960 (1986).
[Crossref]

example Windshear training program (1)

Federal Aviation Administration “Windshear Training Aid,” example Windshear training program (Nov.1986).

IEEE Trans. Geosci. Electron. (1)

D. S. Zrnic, “Estimation of Spectral Moments for Weather Echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979).
[Crossref]

IEEE Trans. Geosci. Remote Sensing (1)

P. R. Mahapatra, D. S. Zrnic, “Practical Algorithms for Mean Velocity Estimation in Pulse Doppler Weather Radars Using a Small Number of Samples,” IEEE Trans. Geosci. Remote Sensing GE-21, 491–501 (1983).
[Crossref]

Int. J. Aviat. Saf. (1)

A. A. Woodfield, J. M. Vaughan, “Airspeed and Wind Shear Measurements With an Airborne CO2 CW Laser,” Int. J. Aviat. Saf. 1, 129–224 (1983).

J. Climate Appl. Meteorol. (1)

J. W. Wilson, R. D. Roberts, C. Kessinger, J. McCarthy, “Microburst Wind Structure and Evaluation of Doppler Radar for Airport Wind Shear Detection,” J. Climate Appl. Meteorol. 23, 898–915 (1984); National Research Council, Low-Altitude Wind Shear and Its Hazard to Aviation (National Academy Press, Washington, DC, 1983).
[Crossref]

J. Geophys. Res. (1)

R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright, W. Pi, “Altitude and Seasonal Characteristics of Aerosol Backscatter at Thermal Infrared Wavelengths Using Lidar Observations from Coastal California,” J. Geophys. Res. 94, 9897–9908 (1989).
[Crossref]

J. Meteorol. (1)

J. D. Marshall, W. McK. Palmer, “The Distribution of Raindrops with Size,” J. Meteorol. 5, 165–166 (1948).
[Crossref]

NOAA Tech. Memo., ERL WPL-42 (1)

F. J. Pratt, R. M. Huffaker, T. R. Lawrence, R. Loveland, “System Considerations of a Long Range Coherent Lidar Wind Sensor with Particular Emphasis on Real Weather Effects,” NOAA Tech. Memo., ERL WPL-42 (1979).

Opt. Lett. (1)

Proc. IRE (1)

P. Rabinowitz, S. Jacobs, R. Targ, G. Gould, “Homodyne Detection of Phase Modulated Light,” Proc. IRE 50, 2365 (1962).

Other (10)

W. Frost, R. L. Bowles, “Incorporation of Wind Shear Terms into the Governing uations of Aircraft Motion,” presented at AIAA Twenty-Second Aerospace Sciences Meeting, AIAA-84-0275 (Jan. 1984).

R. G. Frehlich, M. J. Kavaya, “Coherent Laser Radar Performance for General Conditions,” Appl. Opt. (1991), accepted for publication.
[Crossref] [PubMed]

F. H. Proctor, “The Terminal Area Simulation System,” NASA Contract. Rep. 4046 (Vol. I) and 4047 (Vol. II), DOT/FAA/PM-86-50 (1987).

V. E. Zuev, Laser Beams in the Atmosphere (Consultants Bureau, New York, 1982).
[Crossref]

C. C. Chen, “A Correction for Middleton’s Visible and Infrared Radiation Extinction Coefficients Due to Rain,” The Rand Corp. Report R-1523-PR (1974).

E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, 1976), pp. 89–90.

R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Memo., ERL WPL-37 (1978).

J. A. Thomson, F. P. Boynton, “Development of Design Procedures for Coherent Lidar Measurements of Atmospheric Winds,” Final Report on Contract NOAA-03-7-022-35106, Physical Dynamics, Inc., Berkeley, CA, report PD-B-77-137 (June1977, revised Sept. 1977, Nov. 1977, and Jan. 1978).

H. L. Van Trees, Detection, Estimation, and Modulation Theory. Part I. Detection, Estimation, and Linear Modulation Theory (Wiley, New York, 1968).

R. W. Lee, K. A. Lee, “A Poly-Pulse-Pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting On Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, DC, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Windshear problem showing the performance-increasing and performance-decreasing outflows from a microburst.

Fig. 2
Fig. 2

Block diagram of an optical heterodyne lidar system.

Fig. 3
Fig. 3

Velocity error as a function of wideband SNR (with air turbulence) for three Doppler estimators.

Fig. 4
Fig. 4

CO2 and Ho:YAG lidar narrowband SNR and true LOS wind velocity as a function of distance from the core of a dry micro-burst.

Fig. 5
Fig. 5

Narrowband SNR and true LOS wind velocity as a function of distance from the core of a wet microburst for three aircraft positions: (a) CO2 lidar and (b) Ho:YAG lidar.

Fig. 6
Fig. 6

Range azimuth scan of a dry microburst at Denver/Stapleton Airport. Simulated wind velocity measurements are shown for CO2 lidar in (a) and for Ho:YAG lidar in (b); simulated lidar measurements of hazard index for the two lidars are shown in (c) and (d); the true hazard index is shown in (e), with LOS wind only, and in (f), with LOS and vertical wind.

Fig. 7
Fig. 7

Range azimuth scan of a wet microburst at Dallas/Fort Worth Airport. Simulated wind velocity measurements are shown for CO2 lidar in (a) and for Ho:YAG lidar in (b); simulated lidar measurements of hazard index for the two lidars are shown in (c) and (d); the true hazard index is shown in (e), with LOS wind only, and in (f), with LOS and vertical wind.

Fig. 8
Fig. 8

Range in rain with unity narrowband SNR for 5-mJ CO2 and Ho:YAG lidars.

Fig. 9
Fig. 9

Conceptual diagram for an airborne CO2 lidar for windshear detection.

Tables (4)

Tables Icon

Table I Quantitative Technical Requirements

Tables Icon

Table II Pulsed Lidar Computer Simulation Input Parameters

Tables Icon

Table III Monte Carlo Coherent Lidar Windshear Computer Simulation

Tables Icon

Table IV Base Case Parameters

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

F = V ˙ r / g - V z / V a V a g ( Δ R ) [ V r ( R + Δ R ) - V r ( R ) ] - V z ( R + Δ R / 2 ) V a ,
SNR N ( t ) = η h ν c ( t - τ ) / 2 c t / 2 P ( t , R ) B N ( R ) SRF ( R ) d R ,
P ( t , R ) = P t ( t - 2 R c ) β ( R ) A R 2 exp [ - 2 0 R α ( R ) d R ] ,
SRF ( R ) = [ 1 + ( 1 - R F ) 2 ( k D 2 8 R ) 2 + ( D 2 S 0 ) 2 ] ,
S 0 ( R ) = [ H k 2 0 R C n 2 ( R ) ( 1 - R R ) 5 / 3 d R ] - 3 / 5 ,
SNR N ( R ) = E η β λ K 2 π D 2 8 h B N ( R ) R 2 [ 1 + ( 1 - R F ) 2 ( π D 2 4 λ R ) 2 + ( D 2 S 0 ) 2 ] - 1 ,
T a = T p [ P a / 1000 ] 0.29 ,
R a = 19.86 M a 1.136 .
K rain = 0.155 R a + 2.66 ,
K rain ( 2.0913 μ m ) = 1.1 K rain ( 0.63 μ m ) .
K rain ( 10.591 μ m ) = 1.4 K rain ( 0.63 μ m ) ,
β rain = 0.006 4 π · α rain [ m - 1 · sr - 1 ] .
C n 2 = 1.5853 × 10 - 12 Z - 4 / 3
V r ( R ) ¯ = 0 f 1 ( X ) d X 0 f 0 ( X ) d X ,
f n ( X ) = V r n ( X ) g p ( X ) .
g p ( X ) = exp [ - 4 π ( X - R ) 2 c 2 τ 2 ]
V r 2 ( R ) ¯ = 0 f 2 ( X ) d X 0 f 0 ( X ) d X .
W v ( R ) = [ V r 2 ( R ) ¯ - [ V r ( R ) ¯ ] 2 ] 1 / 2 .
W f ( R ) = ( 2 λ ) [ V r 2 ( R ) ¯ - [ V r ( R ) ¯ ] 2 + ( λ 2 ) 2 ( 1 2 π τ d p ) 2 ] 1 / 2 ,
τ d p = τ .
B N ( R ) = W f ( R ) .
σ v ( R ) = ( 2 V a ) [ 4 π W V N 3 M SNR W 2 + 3 M 3 2 π 2 SNR W + 12 W V N 4 M ( 1 - 12 W V N 2 ) ] 1 / 2 ,
V a = ( λ 2 ) ( 1 2 ) ( 1 T s ) = λ 4 T s ,
T s = 1 f s ,
f s = B W ,
B W = 1 τ + 4 V max λ
W V N ( R ) = [ ( λ / 2 ) × W f ( R ) ] / ( 2 V a ) = B N ( R ) / B W
σ v ( R ) = ( λ 2 ) ( 1 M ) 1 / 2 × [ 4 π B N 3 ( R ) SNR W 2 B W + 3 B W 2 M 2 2 π 2 SNR W + 12 B N 4 ( R ) B w 2 - 12 B N 2 ( R ) ] 1 / 2 ,
NEST = int [ ( Δ R / { ( c / 2 ) [ τ 2 + ( M T s ) 2 ] 1 / 2 } ) ]

Metrics