Abstract

Simultaneous temperature and CO2 concentration measurements with multiplex coherent anti-Stokes Raman scattering (CARS) spectra of CO2 were performed. CARS spectra of pure CO2 and various mixtures of CO2 and N2 in a furnace were recorded at various temperatures to test the computer code that simulates CO2 CARS spectra using recent spectroscopic constants. The temperatures obtained from the CO2 CARS spectra were in good agreement with thermocouple temperature measurements. However, the CO2 concentrations cannot be accurately extracted from these spectra. It is believed by the authors that the cross-coherent effect, which has not been included in the present model, and the difficulty of accurately accounting for the background are two important factors affecting the CO2 concentration measurements. H2 pure rotational lines S(4) and S(5) were found in the CO2 CARS spectra of a hydrocarbon flame. These assignments were confirmed from intensity ratio measurements of S(4) and S(5) lines at different temperatures. A theoretical study shows that the H2 concentration measurement from the S(5) line should be more sensitive than that of the S(4) and S(9) lines at the flame temperature. CARS spectra of preanalyzed mixtures of N2, CO2, and H2 in a furnace were recorded to investigate the feasibility of inferring the H2 concentration from these spectra. Simultaneous CO2 and H2 multiplex CARS spectra were also recorded in a CH4/O2 diffusion flame and in the MSU/DIAL test stand to observe the high temperature spectra. The results of these measurements are presented.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Greenhalgh, “Quantitative CARS Spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, Eds. (Wiley, New York, 1988), pp. 193–251.
  2. A. C. Eckbreth, “Laser Diagnostic for Combustion Temperature and Species,” (Abacus Press, Cambridge, MA1988), pp. 220–300.
  3. D. Klick, K. A. Marko, L. Rimai, “Broadband Single-Pulse CARS Spectra in a Fired Internal Combustion Engine,” Appl. Opt. 20, 1178–1181 (1981).
    [CrossRef] [PubMed]
  4. E. J. Beiting, “Multiplex CARS Temperature Measurements in a Coal-Fired MHD Environment,” Appl. Opt. 25, 1684–1692 (1986).
    [CrossRef] [PubMed]
  5. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt 23, 1328–1339 (1984).
    [CrossRef] [PubMed]
  6. M. Alden, S. Wallin, “CARS Experiments in a Full-Scale (10 × 10 m) Industrial Coal Furnace,” Appl. Opt. 24, 3434–3437 (1985).
    [CrossRef] [PubMed]
  7. A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous, Multiple Species Measurements,” Appl. Opt. 24, 2731–2736 (1985).
    [CrossRef] [PubMed]
  8. R. P. Lucht, “Three-Laser Coherent Anti-Stokes Raman Scattering Measurements of Two Species,” Opt. Lett. 12, 78–80 (1987).
    [CrossRef] [PubMed]
  9. F. Y. Yueh, E. J. Beiting, “Simultaneous N2, CO, and H2 Multiplex CARS Measurements in Combustion Environments Using a Single Dye Laser,” Appl. Opt. 27, 3233–3243 (1988).
    [CrossRef] [PubMed]
  10. J. P. Singh, F. Y. Yueh, “Multiplex CARS for Combustion Diagnostics,” in Proceedings, International Conference on Lasers ’87 (1987), pp. 925–930.
  11. K. Aron, L. E. Harris, J. Fendell, “N2 and CO Vibrational CARS and H2 Rotational CARS Spectroscopy of CH4/N2O Flames,” Appl. Opt. 22, 3604–3611 (1983).
    [CrossRef] [PubMed]
  12. A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
    [CrossRef]
  13. J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977), pp. 173–223.
  14. A. C. Eckbreth, P. W. Schreiber, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion and Gas-phase Diagnostics,” in Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, Ed. (Academic, New York, 1981), pp. 27–87.
  15. S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
    [CrossRef]
  16. H. Kataoka, S. Maeda, C. Hirose, “Effects of Laser Linewidth on the Coherent Anti-Stokes Raman Spectroscopy Spectral Profile,” Appl. Spectrosc. 36, 565–569 (1982).
    [CrossRef]
  17. R. E. Teets, “Accurate Convolutions of Coherent Anti-Stokes Raman Spectra,” Opt. Lett. 9, 226–228 (1984).
    [CrossRef] [PubMed]
  18. R. J. Hall, J. H. Stufflebeam, “Qualitative CARS Spectroscopy of CO2 and N2O,” Appl. Opt. 23, 4319–4327 (1984).
    [CrossRef] [PubMed]
  19. N. Papineau, M. Pealat, “CARS Spectrum of High Temperature 3002–CO2: Analysis and Simulation,” Appl. Opt. 24, 3009 (1985).
    [CrossRef]
  20. C. M. Penny, L. M. Goldman, M. Lapp, “Raman Scattering Cross Section,” Nature London Phys. Sci. 235, 110–112 (1972).
  21. L. S. Rothman, “Infrared Energy Levels and Intensities of Carbon Dioxide. Part 3,” Appl. Opt. 25, 1795–1816 (1986).
    [CrossRef] [PubMed]
  22. F. Y. Yueh, J. P. Singh, E. J. Beiting, W. S. Shepard, R. L. Cook, “Recent Results in Application of CARS to Simultaneous Measurement of Temperature and CO Concentration in an MHD Environment,” SEAM 88, 6.1.1–6.1.10 (1988).
  23. E. J. Beiting, J. P. Singh, “Simple Particle Injection System for Laboratory Burners,” Rev. Sci. Instrum. 57, 377–379 (1986).
    [CrossRef]
  24. D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” Astrophys. J. Lett. 291, L15–L18 (1985).
    [CrossRef]
  25. M. L. Koszykowski, R. L. Farrow, R. E. Palmer, “Calculation of Collisionally Narrowed Coherent Anti-Stokes Raman Spectroscopy Spectra,” Opt. Lett. 10, 478–480 (1985).
    [CrossRef] [PubMed]
  26. J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotopic Raman Scattering Spectra—Application to the SRS N2Q-Branch,” Chem. Phys. 106, 427–439 (1986).
    [CrossRef]
  27. E. Diebel, T. Dreier, B. Lange, J. Wolfrum, “Parameter Studies in Practical Nitrogen CARS Thermometry Using Standard and Advanced Fitting Codes,” Appl. Phys. B 50, 39–46 (1990).
    [CrossRef]
  28. L. Rosenmann, J.-M. Hartmann, M.-Y. Perrin, J. Taine, “Accurate Calculated Tabulations of IR and Raman CO2 Line Broadening by CO2, H2O, N2, O2 in the 300–2400-K Temperature Range,” Appl. Opt. 27, 3902–3907 (1988).
    [CrossRef] [PubMed]

1990 (1)

E. Diebel, T. Dreier, B. Lange, J. Wolfrum, “Parameter Studies in Practical Nitrogen CARS Thermometry Using Standard and Advanced Fitting Codes,” Appl. Phys. B 50, 39–46 (1990).
[CrossRef]

1988 (4)

L. Rosenmann, J.-M. Hartmann, M.-Y. Perrin, J. Taine, “Accurate Calculated Tabulations of IR and Raman CO2 Line Broadening by CO2, H2O, N2, O2 in the 300–2400-K Temperature Range,” Appl. Opt. 27, 3902–3907 (1988).
[CrossRef] [PubMed]

F. Y. Yueh, J. P. Singh, E. J. Beiting, W. S. Shepard, R. L. Cook, “Recent Results in Application of CARS to Simultaneous Measurement of Temperature and CO Concentration in an MHD Environment,” SEAM 88, 6.1.1–6.1.10 (1988).

F. Y. Yueh, E. J. Beiting, “Simultaneous N2, CO, and H2 Multiplex CARS Measurements in Combustion Environments Using a Single Dye Laser,” Appl. Opt. 27, 3233–3243 (1988).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

1987 (2)

J. P. Singh, F. Y. Yueh, “Multiplex CARS for Combustion Diagnostics,” in Proceedings, International Conference on Lasers ’87 (1987), pp. 925–930.

R. P. Lucht, “Three-Laser Coherent Anti-Stokes Raman Scattering Measurements of Two Species,” Opt. Lett. 12, 78–80 (1987).
[CrossRef] [PubMed]

1986 (4)

E. J. Beiting, “Multiplex CARS Temperature Measurements in a Coal-Fired MHD Environment,” Appl. Opt. 25, 1684–1692 (1986).
[CrossRef] [PubMed]

L. S. Rothman, “Infrared Energy Levels and Intensities of Carbon Dioxide. Part 3,” Appl. Opt. 25, 1795–1816 (1986).
[CrossRef] [PubMed]

E. J. Beiting, J. P. Singh, “Simple Particle Injection System for Laboratory Burners,” Rev. Sci. Instrum. 57, 377–379 (1986).
[CrossRef]

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotopic Raman Scattering Spectra—Application to the SRS N2Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

1985 (5)

1984 (3)

1983 (1)

1982 (1)

1981 (2)

1972 (1)

C. M. Penny, L. M. Goldman, M. Lapp, “Raman Scattering Cross Section,” Nature London Phys. Sci. 235, 110–112 (1972).

Alden, M.

Anderson, T. J.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous, Multiple Species Measurements,” Appl. Opt. 24, 2731–2736 (1985).
[CrossRef] [PubMed]

Aron, K.

Beiting, E. J.

F. Y. Yueh, E. J. Beiting, “Simultaneous N2, CO, and H2 Multiplex CARS Measurements in Combustion Environments Using a Single Dye Laser,” Appl. Opt. 27, 3233–3243 (1988).
[CrossRef] [PubMed]

F. Y. Yueh, J. P. Singh, E. J. Beiting, W. S. Shepard, R. L. Cook, “Recent Results in Application of CARS to Simultaneous Measurement of Temperature and CO Concentration in an MHD Environment,” SEAM 88, 6.1.1–6.1.10 (1988).

E. J. Beiting, J. P. Singh, “Simple Particle Injection System for Laboratory Burners,” Rev. Sci. Instrum. 57, 377–379 (1986).
[CrossRef]

E. J. Beiting, “Multiplex CARS Temperature Measurements in a Coal-Fired MHD Environment,” Appl. Opt. 25, 1684–1692 (1986).
[CrossRef] [PubMed]

Berger, H.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotopic Raman Scattering Spectra—Application to the SRS N2Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Bonamy, J.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotopic Raman Scattering Spectra—Application to the SRS N2Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Cook, R. L.

F. Y. Yueh, J. P. Singh, E. J. Beiting, W. S. Shepard, R. L. Cook, “Recent Results in Application of CARS to Simultaneous Measurement of Temperature and CO Concentration in an MHD Environment,” SEAM 88, 6.1.1–6.1.10 (1988).

Diebel, E.

E. Diebel, T. Dreier, B. Lange, J. Wolfrum, “Parameter Studies in Practical Nitrogen CARS Thermometry Using Standard and Advanced Fitting Codes,” Appl. Phys. B 50, 39–46 (1990).
[CrossRef]

Dobbs, G. M.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt 23, 1328–1339 (1984).
[CrossRef] [PubMed]

Dreier, T.

E. Diebel, T. Dreier, B. Lange, J. Wolfrum, “Parameter Studies in Practical Nitrogen CARS Thermometry Using Standard and Advanced Fitting Codes,” Appl. Phys. B 50, 39–46 (1990).
[CrossRef]

Druet, S. A. J.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous, Multiple Species Measurements,” Appl. Opt. 24, 2731–2736 (1985).
[CrossRef] [PubMed]

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt 23, 1328–1339 (1984).
[CrossRef] [PubMed]

A. C. Eckbreth, “Laser Diagnostic for Combustion Temperature and Species,” (Abacus Press, Cambridge, MA1988), pp. 220–300.

A. C. Eckbreth, P. W. Schreiber, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion and Gas-phase Diagnostics,” in Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, Ed. (Academic, New York, 1981), pp. 27–87.

Farrow, R. L.

Fendell, J.

Goldman, L. M.

C. M. Penny, L. M. Goldman, M. Lapp, “Raman Scattering Cross Section,” Nature London Phys. Sci. 235, 110–112 (1972).

Greenhalgh, D. A.

D. A. Greenhalgh, “Quantitative CARS Spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, Eds. (Wiley, New York, 1988), pp. 193–251.

Hall, R. J.

Harris, L. E.

Hartmann, J.-M.

Harvey, A. B.

J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977), pp. 173–223.

Hirose, C.

Jennings, D. E.

D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” Astrophys. J. Lett. 291, L15–L18 (1985).
[CrossRef]

Kataoka, H.

Klick, D.

Koszykowski, M. L.

Lange, B.

E. Diebel, T. Dreier, B. Lange, J. Wolfrum, “Parameter Studies in Practical Nitrogen CARS Thermometry Using Standard and Advanced Fitting Codes,” Appl. Phys. B 50, 39–46 (1990).
[CrossRef]

Lapp, M.

C. M. Penny, L. M. Goldman, M. Lapp, “Raman Scattering Cross Section,” Nature London Phys. Sci. 235, 110–112 (1972).

Lavorel, B.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotopic Raman Scattering Spectra—Application to the SRS N2Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Lucht, R. P.

Maeda, S.

Marko, K. A.

McDonald, J. R.

J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977), pp. 173–223.

Millot, G.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotopic Raman Scattering Spectra—Application to the SRS N2Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Nibler, J. W.

J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977), pp. 173–223.

Owyoung, A.

D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” Astrophys. J. Lett. 291, L15–L18 (1985).
[CrossRef]

Palmer, R. E.

Papineau, N.

N. Papineau, M. Pealat, “CARS Spectrum of High Temperature 3002–CO2: Analysis and Simulation,” Appl. Opt. 24, 3009 (1985).
[CrossRef]

Pealat, M.

N. Papineau, M. Pealat, “CARS Spectrum of High Temperature 3002–CO2: Analysis and Simulation,” Appl. Opt. 24, 3009 (1985).
[CrossRef]

Penny, C. M.

C. M. Penny, L. M. Goldman, M. Lapp, “Raman Scattering Cross Section,” Nature London Phys. Sci. 235, 110–112 (1972).

Perrin, M.-Y.

Rahn, L. A.

D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” Astrophys. J. Lett. 291, L15–L18 (1985).
[CrossRef]

Rimai, L.

Robert, D.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotopic Raman Scattering Spectra—Application to the SRS N2Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Rosenmann, L.

Rothman, L. S.

Sala, J. P.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotopic Raman Scattering Spectra—Application to the SRS N2Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Schreiber, P. W.

A. C. Eckbreth, P. W. Schreiber, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion and Gas-phase Diagnostics,” in Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, Ed. (Academic, New York, 1981), pp. 27–87.

Shaub, W. M.

J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977), pp. 173–223.

Shepard, W. S.

F. Y. Yueh, J. P. Singh, E. J. Beiting, W. S. Shepard, R. L. Cook, “Recent Results in Application of CARS to Simultaneous Measurement of Temperature and CO Concentration in an MHD Environment,” SEAM 88, 6.1.1–6.1.10 (1988).

Singh, J. P.

F. Y. Yueh, J. P. Singh, E. J. Beiting, W. S. Shepard, R. L. Cook, “Recent Results in Application of CARS to Simultaneous Measurement of Temperature and CO Concentration in an MHD Environment,” SEAM 88, 6.1.1–6.1.10 (1988).

J. P. Singh, F. Y. Yueh, “Multiplex CARS for Combustion Diagnostics,” in Proceedings, International Conference on Lasers ’87 (1987), pp. 925–930.

E. J. Beiting, J. P. Singh, “Simple Particle Injection System for Laboratory Burners,” Rev. Sci. Instrum. 57, 377–379 (1986).
[CrossRef]

Stufflebeam, J. H.

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt 23, 1328–1339 (1984).
[CrossRef] [PubMed]

R. J. Hall, J. H. Stufflebeam, “Qualitative CARS Spectroscopy of CO2 and N2O,” Appl. Opt. 23, 4319–4327 (1984).
[CrossRef] [PubMed]

Taine, J.

Taran, J. P. E.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Teets, R. E.

Tellex, P. A.

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt 23, 1328–1339 (1984).
[CrossRef] [PubMed]

Wallin, S.

Wolfrum, J.

E. Diebel, T. Dreier, B. Lange, J. Wolfrum, “Parameter Studies in Practical Nitrogen CARS Thermometry Using Standard and Advanced Fitting Codes,” Appl. Phys. B 50, 39–46 (1990).
[CrossRef]

Yueh, F. Y.

F. Y. Yueh, E. J. Beiting, “Simultaneous N2, CO, and H2 Multiplex CARS Measurements in Combustion Environments Using a Single Dye Laser,” Appl. Opt. 27, 3233–3243 (1988).
[CrossRef] [PubMed]

F. Y. Yueh, J. P. Singh, E. J. Beiting, W. S. Shepard, R. L. Cook, “Recent Results in Application of CARS to Simultaneous Measurement of Temperature and CO Concentration in an MHD Environment,” SEAM 88, 6.1.1–6.1.10 (1988).

J. P. Singh, F. Y. Yueh, “Multiplex CARS for Combustion Diagnostics,” in Proceedings, International Conference on Lasers ’87 (1987), pp. 925–930.

Appl. Opt (1)

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt 23, 1328–1339 (1984).
[CrossRef] [PubMed]

Appl. Opt. (10)

M. Alden, S. Wallin, “CARS Experiments in a Full-Scale (10 × 10 m) Industrial Coal Furnace,” Appl. Opt. 24, 3434–3437 (1985).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous, Multiple Species Measurements,” Appl. Opt. 24, 2731–2736 (1985).
[CrossRef] [PubMed]

D. Klick, K. A. Marko, L. Rimai, “Broadband Single-Pulse CARS Spectra in a Fired Internal Combustion Engine,” Appl. Opt. 20, 1178–1181 (1981).
[CrossRef] [PubMed]

E. J. Beiting, “Multiplex CARS Temperature Measurements in a Coal-Fired MHD Environment,” Appl. Opt. 25, 1684–1692 (1986).
[CrossRef] [PubMed]

K. Aron, L. E. Harris, J. Fendell, “N2 and CO Vibrational CARS and H2 Rotational CARS Spectroscopy of CH4/N2O Flames,” Appl. Opt. 22, 3604–3611 (1983).
[CrossRef] [PubMed]

F. Y. Yueh, E. J. Beiting, “Simultaneous N2, CO, and H2 Multiplex CARS Measurements in Combustion Environments Using a Single Dye Laser,” Appl. Opt. 27, 3233–3243 (1988).
[CrossRef] [PubMed]

R. J. Hall, J. H. Stufflebeam, “Qualitative CARS Spectroscopy of CO2 and N2O,” Appl. Opt. 23, 4319–4327 (1984).
[CrossRef] [PubMed]

N. Papineau, M. Pealat, “CARS Spectrum of High Temperature 3002–CO2: Analysis and Simulation,” Appl. Opt. 24, 3009 (1985).
[CrossRef]

L. S. Rothman, “Infrared Energy Levels and Intensities of Carbon Dioxide. Part 3,” Appl. Opt. 25, 1795–1816 (1986).
[CrossRef] [PubMed]

L. Rosenmann, J.-M. Hartmann, M.-Y. Perrin, J. Taine, “Accurate Calculated Tabulations of IR and Raman CO2 Line Broadening by CO2, H2O, N2, O2 in the 300–2400-K Temperature Range,” Appl. Opt. 27, 3902–3907 (1988).
[CrossRef] [PubMed]

Appl. Phys. B (2)

E. Diebel, T. Dreier, B. Lange, J. Wolfrum, “Parameter Studies in Practical Nitrogen CARS Thermometry Using Standard and Advanced Fitting Codes,” Appl. Phys. B 50, 39–46 (1990).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

Appl. Spectrosc. (1)

Astrophys. J. Lett. (1)

D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” Astrophys. J. Lett. 291, L15–L18 (1985).
[CrossRef]

Chem. Phys. (1)

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotopic Raman Scattering Spectra—Application to the SRS N2Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Nature London Phys. Sci. (1)

C. M. Penny, L. M. Goldman, M. Lapp, “Raman Scattering Cross Section,” Nature London Phys. Sci. 235, 110–112 (1972).

Opt. Lett. (3)

Proceedings, International Conference on Lasers ’87 (1)

J. P. Singh, F. Y. Yueh, “Multiplex CARS for Combustion Diagnostics,” in Proceedings, International Conference on Lasers ’87 (1987), pp. 925–930.

Prog. Quantum Electron. (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Rev. Sci. Instrum. (1)

E. J. Beiting, J. P. Singh, “Simple Particle Injection System for Laboratory Burners,” Rev. Sci. Instrum. 57, 377–379 (1986).
[CrossRef]

SEAM (1)

F. Y. Yueh, J. P. Singh, E. J. Beiting, W. S. Shepard, R. L. Cook, “Recent Results in Application of CARS to Simultaneous Measurement of Temperature and CO Concentration in an MHD Environment,” SEAM 88, 6.1.1–6.1.10 (1988).

Other (4)

J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977), pp. 173–223.

A. C. Eckbreth, P. W. Schreiber, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion and Gas-phase Diagnostics,” in Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, Ed. (Academic, New York, 1981), pp. 27–87.

D. A. Greenhalgh, “Quantitative CARS Spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, Eds. (Wiley, New York, 1988), pp. 193–251.

A. C. Eckbreth, “Laser Diagnostic for Combustion Temperature and Species,” (Abacus Press, Cambridge, MA1988), pp. 220–300.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schmatic of the CARS configuration used in the present measurements.

Fig. 2
Fig. 2

CO2–H2 CARS spectrum in a CH4/O2 diffusion flame.

Fig. 3
Fig. 3

Fitting of the computer-simulated CO2 CARS spectra with observed spectra at various temperatures in the furnace.

Fig. 4
Fig. 4

Observed and simulated CARS spectra of a preanalyzed gas mixture with 19.9% CO2, 9.96% H2, and 70.14% N2 at 1100 K in a furnace.

Fig. 5
Fig. 5

Observed multiplex CO2–H2 CARS spectra in a CH4/O2 diffusion flame with theoretical spectra.

Fig. 6
Fig. 6

Fitting of the computer-simulated spectra with the observed spectra in the turbulent flow of postcombustion gases produced from the combustion of diesel fuel and preheated air at a distance of 2.95 m from the combustor. The combustor was operated (a) fuel rich at stoichiometry ϕ = 0.92, (b) air rich at stoichiometry ϕ = 1.05.

Fig. 7
Fig. 7

Plot of IS(5)/IS(9) and IS(5)/IS(4) vs temperature.

Fig. 8
Fig. 8

Error in inferred temperature as a function of a mismatch between the true Stokes (A) central frequency (B) bandwidth and that used in the model. The test spectra were calculated using a temperature of 1450K.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I 4 ( ω 4 ) ~ χ C A R S 2 I 1 ( ω 1 ) I 2 ( ω 2 ) × I 3 ( ω 3 ) δ ( ω 1 + ω 3 - ω 2 - ω 4 ) d ω 1 d ω 2 d ω 3 ,
χ CARS = χ N R + 1 2 χ R ( ω 1 - ω 2 ) + 1 2 χ R ( ω 3 - ω 2 )
χ R ( ω 1 , ω 2 ) = N j α j 2 Δ ρ j ( ω j - ω 1 + ω 2 ) - i γ j ,
γ j = 0.05 ( 300 T ) 0.75 .
χ R ( ω 1 - ω 2 ) = ( N j α j 2 Δ ρ j ( ω j - ω 1 + ω 2 ) - i γ j ) · ( 1 + i j γ j ρ j ( ω j - ω 1 + ω 2 ) - i γ j ) - 1 .
I 4 ( ω 4 ) ~ exp [ - ( ω 4 - 2 ω 1 0 + ω 2 0 ) 2 ( Δ ω 2 2 ln 2 ) 2 ] × χ N R + χ R ( ω 1 - ω 2 ) 2 I 1 [ ω 3 - ( ω 1 - ω 2 ) ] d ( ω 1 - ω 2 ) .
χ CARS = χ N R + N Δ ρ j ω j - ω 1 + ω 2 - i γ j · 4 45 · γ 00 2 · b J + 2 J · k ( J ) ,
χ CARS = χ N R + χ CO 2 R ( ω 1 - ω 2 ) + χ H 2 R ( ω 1 - ω 2 ) .

Metrics