Abstract

Statistically significant correlations have been established between certain fabrication parameters of matched clad, single-mode optical fiber waveguides and their response to an ionizing radiation dose of 2000 rad. The recovery data measured at −35°C following exposure have been fit to nth-order kinetic behavior where the adjustable parameters are the initial and permanent incremental losses (Ao and Af, respectively), the half-life of attenuation τ, and the order of kinetics n. The set of fibers chosen for analysis had Ge-doped silica cores. In fibers with Ge-F-doped silica clads, Ao correlates with the concentration of Ge-doped into the fiber core; Af correlates with the ratio of oxygen to reagents used during core deposition; and τ and n correlate with a two-way interaction of core oxygen and fiber draw speed. In P-F-doped clad fibers, the P concentration has been found to correlate with the order of the kinetics of recovery.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Friebele, “Optical Fiber Waveguides in Radiation Environments,” Opt. Eng. 18, 552–561 (1979).
    [CrossRef]
  2. E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical Fiber Waveguides in Radiation Environments, II,” Phys. Rev. B 1, 355–369 (1984).
  3. E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of Radiation Effects in Fiber Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 70–88 (1985).
  4. E. J. Friebele, D. L. Griscom, “Color Centers in Glass Optical Fiber Waveguides,” Proc. Mater. Res. Soc. 61, 319–331 (1986).
    [CrossRef]
  5. E. J. Friebele, P. C. Schultz, M. E. Gingerich, “Compositional Effects on the Radiation Response of Ge-Doped Silica-Core Optical Fiber Waveguides,” Appl. Opt. 19, 2910–2916 (1980).
    [CrossRef] [PubMed]
  6. J. A. Wall, T. J. Loretz, J. E. Mattison, “Optical Fiber Composition and Radiation Hardness,” Proc. Soc. Photo-Opt. Instrum. Eng. 296, 35–39 (1981).
  7. D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental Defect Centers in Glass: Electron Spin Resonance and Optical Absorption Studies of Irradiated Phosphorus-Doped Silica Glass and Optical Fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
    [CrossRef]
  8. E. W. Mies, L. Soto, “Characterization of the Radiation Sensitivity of Single-Mode Optical Fibers,” in Technical Digest, Fifth International Conference on Integrated Optics and Optical Fiber Communication/Eleventh European Conference on Optical Communication, Venice (1985).
  9. C. G. Askins, C. M. Shaw, E. J. Friebele, “Radiation Response Prediction of Single Mode Optical Fiber Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 721, 57–62 (1986).
  10. E. J. Friebele, “Radiation Response Prediction of Single Mode Fibers,” NCS Tech. Bull. 88-1 (National Communications System, Arlington, VA, 1988).
  11. C. G. Askins, C. M. Shaw, T. E. Tsai, C. C. Harrington, M. E. Gingerich, E. J. Friebele, “Radiation Response Prediction in Single-Mode Optical Fibers II,” Proc. Soc. Photo-Opt. Instrum. Eng. 992, 74–83 (1988).
  12. D. C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 1984).
  13. B. L. Raktoe, A. Hedayat, W. T. Federer, Factorial Designs (Wiley, New York, 1981).
  14. K. C. Peng, The Design and Analysis of Scientific Experiments (Addison-Wesley, New York, 1967).
  15. C. R. Hicks, Fundamental Concepts in the Design of Experiments (Holt, Rinehart & Winston, New York, 1964).
  16. E. J. Friebele, M. E. Gingerich, K. J. Long, “Radiation Damage of Optical Fiber Waveguides at Long Wavelengths,” Appl. Opt. 21, 547–553 (1982).
    [CrossRef] [PubMed]
  17. S. W. Benson, The Foundations of Chemical Kinetics (Robert E. Krieger, Malabar, FL, 1982).
  18. K. C. Nelson et al., “The Fabrication and Performance of Long Lengths of Silica Core Fiber,” IEEE/OSA J. Lightwave Technol. LT-3, 935–941 (1985).
    [CrossRef]
  19. Multivariance, distributed by Scientific Software, Inc., Mooresville, IN.
  20. D. L. Griscom, “Nature of Defects and Defect Generation in Optical Glasses,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 38–39 (1986).
  21. E. J. Friebele, D. L. Griscom, G. H. Sigel, “Defect Centers in a Germanium-Doped Silica-Core Optical Fiber,” J. Appl. Phys. 45, 3424–3428 (1974).
    [CrossRef]
  22. E. J. Friebele, M. E. Gingerich, S. J. Hickey, V. E. Kalomiris, “Radiation Effects in Bend-Resistant Optical Fibers,” in Proceedings DOD Fiber Optics Conference ’90 (AFCEA, McLean, VA, 1990), pp. 199–200.
  23. S. Glasstone, P. J. Dolan, The Effects of Nuclear Weapons (U.S. Government Printing Office, Washington, DC, 1977).
    [CrossRef]
  24. E. J. Friebele, C. G. Askins, M. E. Gingerich, “Effect of Low Dose Rate Irradiation on Doped Silica Core Optical Fibers,” Appl. Opt. 23, 4202–4208 (1984).
    [CrossRef] [PubMed]
  25. E. J. Friebele, L. A. Brambani, M. E. Gingerich, S. J. Hickey, J. R. Onstott, “Radiation-Induced Attenuation in Polarization-Maintaining Fibers: Low Dose Rate Response, Stress, and Materials Effects,” Appl. Opt. 28, 5138–5143 (1989).
    [CrossRef] [PubMed]
  26. E. J. Friebele, M. A. Putnam, M. E. Gingerich, C. G. Askins, work in progress.

1989 (1)

1988 (1)

C. G. Askins, C. M. Shaw, T. E. Tsai, C. C. Harrington, M. E. Gingerich, E. J. Friebele, “Radiation Response Prediction in Single-Mode Optical Fibers II,” Proc. Soc. Photo-Opt. Instrum. Eng. 992, 74–83 (1988).

1986 (3)

D. L. Griscom, “Nature of Defects and Defect Generation in Optical Glasses,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 38–39 (1986).

E. J. Friebele, D. L. Griscom, “Color Centers in Glass Optical Fiber Waveguides,” Proc. Mater. Res. Soc. 61, 319–331 (1986).
[CrossRef]

C. G. Askins, C. M. Shaw, E. J. Friebele, “Radiation Response Prediction of Single Mode Optical Fiber Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 721, 57–62 (1986).

1985 (2)

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of Radiation Effects in Fiber Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 70–88 (1985).

K. C. Nelson et al., “The Fabrication and Performance of Long Lengths of Silica Core Fiber,” IEEE/OSA J. Lightwave Technol. LT-3, 935–941 (1985).
[CrossRef]

1984 (2)

E. J. Friebele, C. G. Askins, M. E. Gingerich, “Effect of Low Dose Rate Irradiation on Doped Silica Core Optical Fibers,” Appl. Opt. 23, 4202–4208 (1984).
[CrossRef] [PubMed]

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical Fiber Waveguides in Radiation Environments, II,” Phys. Rev. B 1, 355–369 (1984).

1983 (1)

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental Defect Centers in Glass: Electron Spin Resonance and Optical Absorption Studies of Irradiated Phosphorus-Doped Silica Glass and Optical Fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

1982 (1)

1981 (1)

J. A. Wall, T. J. Loretz, J. E. Mattison, “Optical Fiber Composition and Radiation Hardness,” Proc. Soc. Photo-Opt. Instrum. Eng. 296, 35–39 (1981).

1980 (1)

1979 (1)

E. J. Friebele, “Optical Fiber Waveguides in Radiation Environments,” Opt. Eng. 18, 552–561 (1979).
[CrossRef]

1974 (1)

E. J. Friebele, D. L. Griscom, G. H. Sigel, “Defect Centers in a Germanium-Doped Silica-Core Optical Fiber,” J. Appl. Phys. 45, 3424–3428 (1974).
[CrossRef]

Askins, C. G.

C. G. Askins, C. M. Shaw, T. E. Tsai, C. C. Harrington, M. E. Gingerich, E. J. Friebele, “Radiation Response Prediction in Single-Mode Optical Fibers II,” Proc. Soc. Photo-Opt. Instrum. Eng. 992, 74–83 (1988).

C. G. Askins, C. M. Shaw, E. J. Friebele, “Radiation Response Prediction of Single Mode Optical Fiber Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 721, 57–62 (1986).

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of Radiation Effects in Fiber Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 70–88 (1985).

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical Fiber Waveguides in Radiation Environments, II,” Phys. Rev. B 1, 355–369 (1984).

E. J. Friebele, C. G. Askins, M. E. Gingerich, “Effect of Low Dose Rate Irradiation on Doped Silica Core Optical Fibers,” Appl. Opt. 23, 4202–4208 (1984).
[CrossRef] [PubMed]

E. J. Friebele, M. A. Putnam, M. E. Gingerich, C. G. Askins, work in progress.

Benson, S. W.

S. W. Benson, The Foundations of Chemical Kinetics (Robert E. Krieger, Malabar, FL, 1982).

Brambani, L. A.

Dolan, P. J.

S. Glasstone, P. J. Dolan, The Effects of Nuclear Weapons (U.S. Government Printing Office, Washington, DC, 1977).
[CrossRef]

Federer, W. T.

B. L. Raktoe, A. Hedayat, W. T. Federer, Factorial Designs (Wiley, New York, 1981).

Fleming, J. W.

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental Defect Centers in Glass: Electron Spin Resonance and Optical Absorption Studies of Irradiated Phosphorus-Doped Silica Glass and Optical Fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

Friebele, E. J.

E. J. Friebele, L. A. Brambani, M. E. Gingerich, S. J. Hickey, J. R. Onstott, “Radiation-Induced Attenuation in Polarization-Maintaining Fibers: Low Dose Rate Response, Stress, and Materials Effects,” Appl. Opt. 28, 5138–5143 (1989).
[CrossRef] [PubMed]

C. G. Askins, C. M. Shaw, T. E. Tsai, C. C. Harrington, M. E. Gingerich, E. J. Friebele, “Radiation Response Prediction in Single-Mode Optical Fibers II,” Proc. Soc. Photo-Opt. Instrum. Eng. 992, 74–83 (1988).

C. G. Askins, C. M. Shaw, E. J. Friebele, “Radiation Response Prediction of Single Mode Optical Fiber Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 721, 57–62 (1986).

E. J. Friebele, D. L. Griscom, “Color Centers in Glass Optical Fiber Waveguides,” Proc. Mater. Res. Soc. 61, 319–331 (1986).
[CrossRef]

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of Radiation Effects in Fiber Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 70–88 (1985).

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical Fiber Waveguides in Radiation Environments, II,” Phys. Rev. B 1, 355–369 (1984).

E. J. Friebele, C. G. Askins, M. E. Gingerich, “Effect of Low Dose Rate Irradiation on Doped Silica Core Optical Fibers,” Appl. Opt. 23, 4202–4208 (1984).
[CrossRef] [PubMed]

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental Defect Centers in Glass: Electron Spin Resonance and Optical Absorption Studies of Irradiated Phosphorus-Doped Silica Glass and Optical Fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

E. J. Friebele, M. E. Gingerich, K. J. Long, “Radiation Damage of Optical Fiber Waveguides at Long Wavelengths,” Appl. Opt. 21, 547–553 (1982).
[CrossRef] [PubMed]

E. J. Friebele, P. C. Schultz, M. E. Gingerich, “Compositional Effects on the Radiation Response of Ge-Doped Silica-Core Optical Fiber Waveguides,” Appl. Opt. 19, 2910–2916 (1980).
[CrossRef] [PubMed]

E. J. Friebele, “Optical Fiber Waveguides in Radiation Environments,” Opt. Eng. 18, 552–561 (1979).
[CrossRef]

E. J. Friebele, D. L. Griscom, G. H. Sigel, “Defect Centers in a Germanium-Doped Silica-Core Optical Fiber,” J. Appl. Phys. 45, 3424–3428 (1974).
[CrossRef]

E. J. Friebele, M. E. Gingerich, S. J. Hickey, V. E. Kalomiris, “Radiation Effects in Bend-Resistant Optical Fibers,” in Proceedings DOD Fiber Optics Conference ’90 (AFCEA, McLean, VA, 1990), pp. 199–200.

E. J. Friebele, M. A. Putnam, M. E. Gingerich, C. G. Askins, work in progress.

E. J. Friebele, “Radiation Response Prediction of Single Mode Fibers,” NCS Tech. Bull. 88-1 (National Communications System, Arlington, VA, 1988).

Gingerich, M. E.

E. J. Friebele, L. A. Brambani, M. E. Gingerich, S. J. Hickey, J. R. Onstott, “Radiation-Induced Attenuation in Polarization-Maintaining Fibers: Low Dose Rate Response, Stress, and Materials Effects,” Appl. Opt. 28, 5138–5143 (1989).
[CrossRef] [PubMed]

C. G. Askins, C. M. Shaw, T. E. Tsai, C. C. Harrington, M. E. Gingerich, E. J. Friebele, “Radiation Response Prediction in Single-Mode Optical Fibers II,” Proc. Soc. Photo-Opt. Instrum. Eng. 992, 74–83 (1988).

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of Radiation Effects in Fiber Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 70–88 (1985).

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical Fiber Waveguides in Radiation Environments, II,” Phys. Rev. B 1, 355–369 (1984).

E. J. Friebele, C. G. Askins, M. E. Gingerich, “Effect of Low Dose Rate Irradiation on Doped Silica Core Optical Fibers,” Appl. Opt. 23, 4202–4208 (1984).
[CrossRef] [PubMed]

E. J. Friebele, M. E. Gingerich, K. J. Long, “Radiation Damage of Optical Fiber Waveguides at Long Wavelengths,” Appl. Opt. 21, 547–553 (1982).
[CrossRef] [PubMed]

E. J. Friebele, P. C. Schultz, M. E. Gingerich, “Compositional Effects on the Radiation Response of Ge-Doped Silica-Core Optical Fiber Waveguides,” Appl. Opt. 19, 2910–2916 (1980).
[CrossRef] [PubMed]

E. J. Friebele, M. E. Gingerich, S. J. Hickey, V. E. Kalomiris, “Radiation Effects in Bend-Resistant Optical Fibers,” in Proceedings DOD Fiber Optics Conference ’90 (AFCEA, McLean, VA, 1990), pp. 199–200.

E. J. Friebele, M. A. Putnam, M. E. Gingerich, C. G. Askins, work in progress.

Glasstone, S.

S. Glasstone, P. J. Dolan, The Effects of Nuclear Weapons (U.S. Government Printing Office, Washington, DC, 1977).
[CrossRef]

Griscom, D. L.

D. L. Griscom, “Nature of Defects and Defect Generation in Optical Glasses,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 38–39 (1986).

E. J. Friebele, D. L. Griscom, “Color Centers in Glass Optical Fiber Waveguides,” Proc. Mater. Res. Soc. 61, 319–331 (1986).
[CrossRef]

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of Radiation Effects in Fiber Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 70–88 (1985).

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental Defect Centers in Glass: Electron Spin Resonance and Optical Absorption Studies of Irradiated Phosphorus-Doped Silica Glass and Optical Fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

E. J. Friebele, D. L. Griscom, G. H. Sigel, “Defect Centers in a Germanium-Doped Silica-Core Optical Fiber,” J. Appl. Phys. 45, 3424–3428 (1974).
[CrossRef]

Harrington, C. C.

C. G. Askins, C. M. Shaw, T. E. Tsai, C. C. Harrington, M. E. Gingerich, E. J. Friebele, “Radiation Response Prediction in Single-Mode Optical Fibers II,” Proc. Soc. Photo-Opt. Instrum. Eng. 992, 74–83 (1988).

Hedayat, A.

B. L. Raktoe, A. Hedayat, W. T. Federer, Factorial Designs (Wiley, New York, 1981).

Hickey, S. J.

E. J. Friebele, L. A. Brambani, M. E. Gingerich, S. J. Hickey, J. R. Onstott, “Radiation-Induced Attenuation in Polarization-Maintaining Fibers: Low Dose Rate Response, Stress, and Materials Effects,” Appl. Opt. 28, 5138–5143 (1989).
[CrossRef] [PubMed]

E. J. Friebele, M. E. Gingerich, S. J. Hickey, V. E. Kalomiris, “Radiation Effects in Bend-Resistant Optical Fibers,” in Proceedings DOD Fiber Optics Conference ’90 (AFCEA, McLean, VA, 1990), pp. 199–200.

Hicks, C. R.

C. R. Hicks, Fundamental Concepts in the Design of Experiments (Holt, Rinehart & Winston, New York, 1964).

Kalomiris, V. E.

E. J. Friebele, M. E. Gingerich, S. J. Hickey, V. E. Kalomiris, “Radiation Effects in Bend-Resistant Optical Fibers,” in Proceedings DOD Fiber Optics Conference ’90 (AFCEA, McLean, VA, 1990), pp. 199–200.

Long, K. J.

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of Radiation Effects in Fiber Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 70–88 (1985).

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical Fiber Waveguides in Radiation Environments, II,” Phys. Rev. B 1, 355–369 (1984).

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental Defect Centers in Glass: Electron Spin Resonance and Optical Absorption Studies of Irradiated Phosphorus-Doped Silica Glass and Optical Fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

E. J. Friebele, M. E. Gingerich, K. J. Long, “Radiation Damage of Optical Fiber Waveguides at Long Wavelengths,” Appl. Opt. 21, 547–553 (1982).
[CrossRef] [PubMed]

Loretz, T. J.

J. A. Wall, T. J. Loretz, J. E. Mattison, “Optical Fiber Composition and Radiation Hardness,” Proc. Soc. Photo-Opt. Instrum. Eng. 296, 35–39 (1981).

Marrone, M. J.

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of Radiation Effects in Fiber Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 70–88 (1985).

Mattison, J. E.

J. A. Wall, T. J. Loretz, J. E. Mattison, “Optical Fiber Composition and Radiation Hardness,” Proc. Soc. Photo-Opt. Instrum. Eng. 296, 35–39 (1981).

Mies, E. W.

E. W. Mies, L. Soto, “Characterization of the Radiation Sensitivity of Single-Mode Optical Fibers,” in Technical Digest, Fifth International Conference on Integrated Optics and Optical Fiber Communication/Eleventh European Conference on Optical Communication, Venice (1985).

Montgomery, D. C.

D. C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 1984).

Nelson, K. C.

K. C. Nelson et al., “The Fabrication and Performance of Long Lengths of Silica Core Fiber,” IEEE/OSA J. Lightwave Technol. LT-3, 935–941 (1985).
[CrossRef]

Onstott, J. R.

Peng, K. C.

K. C. Peng, The Design and Analysis of Scientific Experiments (Addison-Wesley, New York, 1967).

Putnam, M. A.

E. J. Friebele, M. A. Putnam, M. E. Gingerich, C. G. Askins, work in progress.

Raktoe, B. L.

B. L. Raktoe, A. Hedayat, W. T. Federer, Factorial Designs (Wiley, New York, 1981).

Schultz, P. C.

Shaw, C. M.

C. G. Askins, C. M. Shaw, T. E. Tsai, C. C. Harrington, M. E. Gingerich, E. J. Friebele, “Radiation Response Prediction in Single-Mode Optical Fibers II,” Proc. Soc. Photo-Opt. Instrum. Eng. 992, 74–83 (1988).

C. G. Askins, C. M. Shaw, E. J. Friebele, “Radiation Response Prediction of Single Mode Optical Fiber Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 721, 57–62 (1986).

Sigel, G. H.

E. J. Friebele, D. L. Griscom, G. H. Sigel, “Defect Centers in a Germanium-Doped Silica-Core Optical Fiber,” J. Appl. Phys. 45, 3424–3428 (1974).
[CrossRef]

Soto, L.

E. W. Mies, L. Soto, “Characterization of the Radiation Sensitivity of Single-Mode Optical Fibers,” in Technical Digest, Fifth International Conference on Integrated Optics and Optical Fiber Communication/Eleventh European Conference on Optical Communication, Venice (1985).

Tsai, T. E.

C. G. Askins, C. M. Shaw, T. E. Tsai, C. C. Harrington, M. E. Gingerich, E. J. Friebele, “Radiation Response Prediction in Single-Mode Optical Fibers II,” Proc. Soc. Photo-Opt. Instrum. Eng. 992, 74–83 (1988).

Wall, J. A.

J. A. Wall, T. J. Loretz, J. E. Mattison, “Optical Fiber Composition and Radiation Hardness,” Proc. Soc. Photo-Opt. Instrum. Eng. 296, 35–39 (1981).

Appl. Opt. (4)

IEEE/OSA J. Lightwave Technol. (1)

K. C. Nelson et al., “The Fabrication and Performance of Long Lengths of Silica Core Fiber,” IEEE/OSA J. Lightwave Technol. LT-3, 935–941 (1985).
[CrossRef]

J. Appl. Phys. (2)

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental Defect Centers in Glass: Electron Spin Resonance and Optical Absorption Studies of Irradiated Phosphorus-Doped Silica Glass and Optical Fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

E. J. Friebele, D. L. Griscom, G. H. Sigel, “Defect Centers in a Germanium-Doped Silica-Core Optical Fiber,” J. Appl. Phys. 45, 3424–3428 (1974).
[CrossRef]

Opt. Eng. (1)

E. J. Friebele, “Optical Fiber Waveguides in Radiation Environments,” Opt. Eng. 18, 552–561 (1979).
[CrossRef]

Phys. Rev. B (1)

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical Fiber Waveguides in Radiation Environments, II,” Phys. Rev. B 1, 355–369 (1984).

Proc. Mater. Res. Soc. (1)

E. J. Friebele, D. L. Griscom, “Color Centers in Glass Optical Fiber Waveguides,” Proc. Mater. Res. Soc. 61, 319–331 (1986).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (5)

D. L. Griscom, “Nature of Defects and Defect Generation in Optical Glasses,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 38–39 (1986).

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of Radiation Effects in Fiber Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 541, 70–88 (1985).

J. A. Wall, T. J. Loretz, J. E. Mattison, “Optical Fiber Composition and Radiation Hardness,” Proc. Soc. Photo-Opt. Instrum. Eng. 296, 35–39 (1981).

C. G. Askins, C. M. Shaw, E. J. Friebele, “Radiation Response Prediction of Single Mode Optical Fiber Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 721, 57–62 (1986).

C. G. Askins, C. M. Shaw, T. E. Tsai, C. C. Harrington, M. E. Gingerich, E. J. Friebele, “Radiation Response Prediction in Single-Mode Optical Fibers II,” Proc. Soc. Photo-Opt. Instrum. Eng. 992, 74–83 (1988).

Other (11)

D. C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 1984).

B. L. Raktoe, A. Hedayat, W. T. Federer, Factorial Designs (Wiley, New York, 1981).

K. C. Peng, The Design and Analysis of Scientific Experiments (Addison-Wesley, New York, 1967).

C. R. Hicks, Fundamental Concepts in the Design of Experiments (Holt, Rinehart & Winston, New York, 1964).

Multivariance, distributed by Scientific Software, Inc., Mooresville, IN.

S. W. Benson, The Foundations of Chemical Kinetics (Robert E. Krieger, Malabar, FL, 1982).

E. J. Friebele, “Radiation Response Prediction of Single Mode Fibers,” NCS Tech. Bull. 88-1 (National Communications System, Arlington, VA, 1988).

E. W. Mies, L. Soto, “Characterization of the Radiation Sensitivity of Single-Mode Optical Fibers,” in Technical Digest, Fifth International Conference on Integrated Optics and Optical Fiber Communication/Eleventh European Conference on Optical Communication, Venice (1985).

E. J. Friebele, M. E. Gingerich, S. J. Hickey, V. E. Kalomiris, “Radiation Effects in Bend-Resistant Optical Fibers,” in Proceedings DOD Fiber Optics Conference ’90 (AFCEA, McLean, VA, 1990), pp. 199–200.

S. Glasstone, P. J. Dolan, The Effects of Nuclear Weapons (U.S. Government Printing Office, Washington, DC, 1977).
[CrossRef]

E. J. Friebele, M. A. Putnam, M. E. Gingerich, C. G. Askins, work in progress.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Plots of nth-order kinetic recovery behavior [Eq. (13)] for various values of kinetic order n.

Fig. 2
Fig. 2

Recovery of the 1.3-μm incremental attenuation induced in (a) pure silica clad, (b) Ge-F-doped silica clad, and (c) P-F-doped silica clad single-mode fibers after an exposure of 2000 rad at −35°C.

Fig. 3
Fig. 3

Effect of core [Ge] and clad [Ge] (target levels from Table I) on A o , derived from OMA and MANOVA. The values of A o derived from OMA are plotted relative to the smallest value since it is impossible to quantitatively determine the correct offset (see text). Note that F is codoped with Ge in the clad to maintain index matching with the silica substrate.

Fig. 4
Fig. 4

Effect of oxygen/reagent ratio used during core deposition on A f derived from OMA and MANOVA. Relative values are plotted for the OMA results (see caption for Fig. 3).

Fig. 5
Fig. 5

Effect of oxygen/reagent ratio used during core deposition on (a) n and (b) τ derived from OMA.

Fig. 6
Fig. 6

Effect of draw speed on (a) n and (b) τ derived from OMA.

Fig. 7
Fig. 7

Effect of clad [P] (target level from Table I) on (a) n and (b) τ derived from OMA and MANOVA. Relative values are plotted for the OMA results (see caption for Fig. 3).

Fig. 8
Fig. 8

Estimated effect of draw speed and oxygen to reagent ratio used during core deposition on (a) n and (b) τ derived from MANOVA.

Tables (14)

Tables Icon

Table IA Fabrication Parameters Phase 1

Tables Icon

Table IB Experimental Design for Six Factorsa

Tables Icon

Table II Fabrication Parameters and Experimental Design for Phase 2 a

Tables Icon

Table III Confounding of One-Way Contrasts with Higher-Order Interactions in the Phase 1 Experimental Designa

Tables Icon

Table IV Analyzed Fiber Compositions (wt%), Oxygen-to-Reagent Ratio (O/R) Used During Deposition, Draw Tension (g), Draw Speed (m/s), and Radiation Recovery Parametersa

Tables Icon

Table V Correlation Matrix for Radiation Response Parameters of Phase 1—All Cases

Tables Icon

Table VI Probabilities of Individual Null Effects and Interactions for the Phase 1 Design—All Fibers

Tables Icon

Table VII Correlation Matrix for Radiation Response Parameters of Phase 1 for Reduced Design of Ge-F-Doped Silica Clad Fibers

Tables Icon

Table VIII Probabilities for Individual Null Effects of Phase 1 Design for Reduced Design of Ge-F-Doped Clad Fibers

Tables Icon

Table IX Probabilities for Individual Null Effects and Selected Estimated Effects for Reduced Phase 1 Design of Doped Silica Clads

Tables Icon

Table X Probabilities for Null Effect of P and Estimated Effect for Reduced Phase 2 Design of P-Doped Silica Clads

Tables Icon

Table XI Comparison of A f (dB/km) of the Phase 2 Fibers Determined Experimentally with that Predicted by Eq. (1)

Tables Icon

Table XII Equations Deriving the Significance of Each Factor In the Phase 1 Experiment from the Orthogonal Matrix Analysis

Tables Icon

Table XIII Equation Deriving the Significance of Each Factor Derived the Orthogonal matrix Analysis of the phase 2 Experiment

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

α 1.3 μ m = 2.98 [ P ] eff + 0.17 ,             R 2 = 0.994 ,
α 1.53 μ m = 4.63 [ P ] eff - 0.09 ,             R 2 = 0.982.
( 2 × 3 ) + ( 1 × 3 ) + ( 4 × 3 ) + ( 2 × 9 ) + ( 1 × 3 ) + 1 = 43.
K i = 1 / 8 j j R j γ i j ,
A 1 = ( R 1 + R 3 + R 6 + R 8 ) / 4 ,             A 2 u = ( R 2 + R 4 + R 5 + R 7 ) / 4.
A 3 = ( R 10 + R 12 + R 13 + R 15 ) / 14 , A 2 d = ( R 9 + R 11 + R 14 + R 16 ) / 4.
A 2 = 1 / 8 j R j γ 2 j = ( A 2 u + A 2 d ) / 2 = A 2 u + ( A 2 d - A 2 u ) / 2 = A 2 d - ( A 2 d - A 2 u ) / 2.
W A = ( A 2 d - A 2 u ) / 2
- d q d t = λ q n ,
q = q 0 [ 1 + ( n - 1 ) q 0 n - 1 λ t ] 1 / ( 1 - n ) for n > 1 ,
q = q 0 exp ( - λ t ) for n = 1.
λ = λ 0 exp ( - E / k T ) ,
A = ( A o - A f ) ( 1 + c t ) - x + A f ,
x 1 / ( n - 1 ) ,
c ( 1 / τ ) [ ( 2 ) 1 / x - 1 ] .

Metrics