Abstract

A versatile and integrated tunable diode laser system for high precision measurements of the important sulfur gas carbonyl sulfide is described. We explicitly address some of the major factors affecting tunable diode laser measurement precision as well as accuracy and have implemented a number of new features for increased system control and versatility. The system described herein provides the capability for measuring ambient concentrations of this gas with a precision in the range from ±0.3 to ±1% over time periods of many hours. Such a precision provides us with an important new capability for measuring true spatial and temporal variations of carbonyl sulfide in the atmosphere.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A–364A (1983).
    [PubMed]
  2. A. Fried, R. Sams, W. W. Berg, “Application of Tunable Diode Laser Absorption for Trace Stratospheric Measurements of HCl: Laboratory Results,” Appl. Opt. 23, 1867–1880 (1984).
    [CrossRef] [PubMed]
  3. H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurements of Trace Gases,” J. Geophys. Res. 95, 10,147–10,153 (1990).
    [CrossRef]
  4. M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous Oxide as a Dynamical Tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11,589–11,598 (1989).
    [CrossRef]
  5. C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, JNO2, CH4, H2O, and CO2 in the 40–26 km Region Using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
    [CrossRef]
  6. G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-Response, High-Precision Carbon Monoxide Sensor Using a Tunable Diode Laser Absorption Technique,” J. Geophys. Res. 92, 2071–2081 (1987).
    [CrossRef]
  7. G. W. Sachse, R. C. Harriss, J. Fishman, G. F. Hill, D. R. Cahoon, “Carbon Monoxide Over the Amazon Basin During the 1985 Dry Season,” J. Geophys. Res. 93, 1422–1430 (1988).
    [CrossRef]
  8. P. J. Crutzen, “The Possible Importance of CSO for the Sulfate Layer of the Stratosphere,” Geophys. Res. Lett. 3, 73–76 (1976).
    [CrossRef]
  9. O. B. Toon, R. P. Turco, P. Hamill, C. S. Kiang, R. C. Whitten, “A One-Dimensional Model Describing Aerosol Formation and Evolution in the Stratosphere: II. Sensitivity Studies and Comparison with Observations,” J. Atmos. Sci. 36, 718–736 (1979).
    [CrossRef]
  10. N. D. Sze, M. K. W. Ko, “Photochemistry of COS, CS2, CH3SCH3, and H2S: Implications for the Atmospheric Sulfur Cycle,” Atmos. Environ. 14, 1223–1239 (1980).
    [CrossRef]
  11. R. P. Turco, R. C. Whitten, O. B. Toon, J. B. Pollack, P. Hamill, “OCS, Stratospheric Aerosols and Climate,” Nature London 283, 283–286 (1980).
    [CrossRef]
  12. J. M. Rodriguez, M. K. W. Ko, N. D. Sze, “Antarctic Chlorine Chemistry: Possible Global Implications,” Geophys. Res. Lett. 15, 257–260 (1988).
    [CrossRef]
  13. D. J. Hofmann, “Perturbations to the Global Atmosphere Associated with the El Chichon Volcanic Eruption of 1982,” Rev. Geophys. 25, 743–759 (1987).
    [CrossRef]
  14. M. A. Tolbert, M. J. Rossi, D. M. Golden, “Heterogeneous Interactions of Chlorine Nitrate, Hydrogen Chloride, and Nitric Acid with Sulfuric Acid Surfaces at Stratospheric Temperatures,” Geophys. Res. Lett. 15, 847–850 (1988).
    [CrossRef]
  15. E. E. Lewin, R. L. Taggart, M. Lalevic, A. R. Bandy, “Determination of Atmospheric Carbonyl Sulfide by Isotope Dilution Gas Chromatography/Mass Spectrometry,” Anal. Chem. 59, 1296–1301 (1987).
    [CrossRef]
  16. F. J. Sandalls, S. A. Penkett, “Measurements of Carbonyl Sulfide and Carbon Disulfide in the Atmosphere,” Atmos. Environ. 11, 197–199 (1977).
    [CrossRef]
  17. P. J. Maroulis, A. L. Torres, A. R. Bandy, “Atmospheric Concentrations of Carbonyl Sulfide in the Southwestern and Eastern United States,” Geophys. Res. Lett. 4, 510–512 (1977).
    [CrossRef]
  18. A. L. Torres, P. J. Maroulis, A. B. Goldberg, A. R. Bandy, “Atmospheric OCS Measurements on Project Gametag,” J. Geophys. Res. 85, 7357–7360 (1980).
    [CrossRef]
  19. R. A. Rasmussen, M. A. K. Khalil, S. D. Hoyt, “The Oceanic Source of Carbonyl Sulfide (OCS),” Atmos. Environ. 16, 1591–1594 (1982).
    [CrossRef]
  20. M. A. Carroll, “Measurements of OCS and CS2 in the Free Troposphere,” J. Geophys. Res. 90, 10,483–10,486 (1985).
  21. P. Brimblecombe, Air Composition and Chemistry (Cambridge U.P., London, 1986), p. 38.
  22. H. G. Bingemer, S. Burgermeister, R. L. Zimmermann, H.-W. Georgii, “Atmospheric OCS: Evidence for a Contribution of Anthropogenic Sources?,” J. Geophys. Res. 95, 20,617–20,622 (1990).
    [CrossRef]
  23. D. J. Hofmann, J. M. Rosen, “Stratospheric Sulfuric Acid Layer: Evidence for an Anthropogenic Component,” Science 208, 1368–1370 (1980).
    [CrossRef] [PubMed]
  24. D. E. Cooper, C. B. Carlisle, “High-Sensitivity FM Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 13, 719–721 (1988).
    [CrossRef] [PubMed]
  25. J. A. Silver, A. C. Stanton, “Two-Tone Optical Heterodyne Spectroscopy Using Buried Double Heterostructure Lead–Salt Diode Lasers,” Appl. Opt. 27, 4438–4444 (1988).
    [CrossRef] [PubMed]
  26. D. Horn, G. C. Pimentel, “2.5-km Low-Temperature Multiple-Reflection Cell,” Appl. Opt. 10, 1892–1898 (1971).
    [CrossRef] [PubMed]
  27. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity Limits of a Tunable Diode Laser Spectrometer, with Application to the Detection of NO2 at the 100-ppt Level,” Appl. Opt. 19, 3349–3353 (1980).
    [CrossRef] [PubMed]
  28. C. R. Webster, “Brewster-Plate Spoiler: a Novel Method for Reducing the Amplitude of Interference Fringes that Limit Tunable-Laser Absorption Sensitivities,” J. Opt. Soc. Am. B 2, 1464–1470 (1985).
    [CrossRef]
  29. J. A. Silver, A. C. Stanton, “Optical Interference Fringe Reduction in Laser Absorption Experiments, Appl. Opt. 27, 1914–1916 (1988).
    [CrossRef] [PubMed]
  30. A. Fried, J. R. Drummond, B. Henry, J. Fox, “Reduction of Interference Fringes in Small Multipass Absorption Cells by Pressure Modulation,” Appl. Opt. 29, 900–902 (1990).
    [CrossRef] [PubMed]
  31. A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
    [CrossRef]
  32. L. S. Rothman et al., “HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  33. D. E. Jennings, “Absolute Line Strengths in ν4, 12CH4: a Dual-Beam Diode Laser Spectrometer with Sweep Integration,” Appl. Opt. 19, 2695–2700 (1980).
    [CrossRef] [PubMed]
  34. A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z-T. Cai, “Determination of Nitrogen Dioxide in Air Compressed Gas Mixtures by Quantitative Tunable Diode Laser Absorption Spectrometry and Chemiluminescence Detection,” Anal. Chem. 60, 394–403 (1988).
    [CrossRef]
  35. T. Iguchi, “Modulation Waveforms for Second-Harmonic Detection with Tunable Diode Lasers,” J. Opt. Soc. Am. B 3, 419–423 (1986).
    [CrossRef]
  36. J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Water Vapor Line Parameters for Microwave to Medium Infrared (Pergamon, New York, 1981).
  37. C. Camy-Peyret, J.-M. Flaud, C. P. Rinsland, M. A. H. Smith, V. M. Devi, A. Goldman, “Line Parameters for Ozone Hot Bands in the 4.8-μm Spectral Region,” J. Mol. Spectrosc. 139, 353–360 (1990).
    [CrossRef]
  38. F. C. Fehsenfeld et al., “Intercomparison of NO2 Measurement Techniques,” J. Geophys. Res. 95, 3579–3597 (1990).
    [CrossRef]

1990 (6)

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurements of Trace Gases,” J. Geophys. Res. 95, 10,147–10,153 (1990).
[CrossRef]

H. G. Bingemer, S. Burgermeister, R. L. Zimmermann, H.-W. Georgii, “Atmospheric OCS: Evidence for a Contribution of Anthropogenic Sources?,” J. Geophys. Res. 95, 20,617–20,622 (1990).
[CrossRef]

A. Fried, J. R. Drummond, B. Henry, J. Fox, “Reduction of Interference Fringes in Small Multipass Absorption Cells by Pressure Modulation,” Appl. Opt. 29, 900–902 (1990).
[CrossRef] [PubMed]

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
[CrossRef]

C. Camy-Peyret, J.-M. Flaud, C. P. Rinsland, M. A. H. Smith, V. M. Devi, A. Goldman, “Line Parameters for Ozone Hot Bands in the 4.8-μm Spectral Region,” J. Mol. Spectrosc. 139, 353–360 (1990).
[CrossRef]

F. C. Fehsenfeld et al., “Intercomparison of NO2 Measurement Techniques,” J. Geophys. Res. 95, 3579–3597 (1990).
[CrossRef]

1989 (1)

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous Oxide as a Dynamical Tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11,589–11,598 (1989).
[CrossRef]

1988 (7)

G. W. Sachse, R. C. Harriss, J. Fishman, G. F. Hill, D. R. Cahoon, “Carbon Monoxide Over the Amazon Basin During the 1985 Dry Season,” J. Geophys. Res. 93, 1422–1430 (1988).
[CrossRef]

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, “Antarctic Chlorine Chemistry: Possible Global Implications,” Geophys. Res. Lett. 15, 257–260 (1988).
[CrossRef]

M. A. Tolbert, M. J. Rossi, D. M. Golden, “Heterogeneous Interactions of Chlorine Nitrate, Hydrogen Chloride, and Nitric Acid with Sulfuric Acid Surfaces at Stratospheric Temperatures,” Geophys. Res. Lett. 15, 847–850 (1988).
[CrossRef]

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z-T. Cai, “Determination of Nitrogen Dioxide in Air Compressed Gas Mixtures by Quantitative Tunable Diode Laser Absorption Spectrometry and Chemiluminescence Detection,” Anal. Chem. 60, 394–403 (1988).
[CrossRef]

D. E. Cooper, C. B. Carlisle, “High-Sensitivity FM Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 13, 719–721 (1988).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Two-Tone Optical Heterodyne Spectroscopy Using Buried Double Heterostructure Lead–Salt Diode Lasers,” Appl. Opt. 27, 4438–4444 (1988).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Optical Interference Fringe Reduction in Laser Absorption Experiments, Appl. Opt. 27, 1914–1916 (1988).
[CrossRef] [PubMed]

1987 (5)

L. S. Rothman et al., “HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

E. E. Lewin, R. L. Taggart, M. Lalevic, A. R. Bandy, “Determination of Atmospheric Carbonyl Sulfide by Isotope Dilution Gas Chromatography/Mass Spectrometry,” Anal. Chem. 59, 1296–1301 (1987).
[CrossRef]

D. J. Hofmann, “Perturbations to the Global Atmosphere Associated with the El Chichon Volcanic Eruption of 1982,” Rev. Geophys. 25, 743–759 (1987).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, JNO2, CH4, H2O, and CO2 in the 40–26 km Region Using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-Response, High-Precision Carbon Monoxide Sensor Using a Tunable Diode Laser Absorption Technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

1986 (1)

1985 (2)

1984 (1)

1983 (1)

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A–364A (1983).
[PubMed]

1982 (1)

R. A. Rasmussen, M. A. K. Khalil, S. D. Hoyt, “The Oceanic Source of Carbonyl Sulfide (OCS),” Atmos. Environ. 16, 1591–1594 (1982).
[CrossRef]

1980 (6)

A. L. Torres, P. J. Maroulis, A. B. Goldberg, A. R. Bandy, “Atmospheric OCS Measurements on Project Gametag,” J. Geophys. Res. 85, 7357–7360 (1980).
[CrossRef]

D. J. Hofmann, J. M. Rosen, “Stratospheric Sulfuric Acid Layer: Evidence for an Anthropogenic Component,” Science 208, 1368–1370 (1980).
[CrossRef] [PubMed]

J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity Limits of a Tunable Diode Laser Spectrometer, with Application to the Detection of NO2 at the 100-ppt Level,” Appl. Opt. 19, 3349–3353 (1980).
[CrossRef] [PubMed]

D. E. Jennings, “Absolute Line Strengths in ν4, 12CH4: a Dual-Beam Diode Laser Spectrometer with Sweep Integration,” Appl. Opt. 19, 2695–2700 (1980).
[CrossRef] [PubMed]

N. D. Sze, M. K. W. Ko, “Photochemistry of COS, CS2, CH3SCH3, and H2S: Implications for the Atmospheric Sulfur Cycle,” Atmos. Environ. 14, 1223–1239 (1980).
[CrossRef]

R. P. Turco, R. C. Whitten, O. B. Toon, J. B. Pollack, P. Hamill, “OCS, Stratospheric Aerosols and Climate,” Nature London 283, 283–286 (1980).
[CrossRef]

1979 (1)

O. B. Toon, R. P. Turco, P. Hamill, C. S. Kiang, R. C. Whitten, “A One-Dimensional Model Describing Aerosol Formation and Evolution in the Stratosphere: II. Sensitivity Studies and Comparison with Observations,” J. Atmos. Sci. 36, 718–736 (1979).
[CrossRef]

1977 (2)

F. J. Sandalls, S. A. Penkett, “Measurements of Carbonyl Sulfide and Carbon Disulfide in the Atmosphere,” Atmos. Environ. 11, 197–199 (1977).
[CrossRef]

P. J. Maroulis, A. L. Torres, A. R. Bandy, “Atmospheric Concentrations of Carbonyl Sulfide in the Southwestern and Eastern United States,” Geophys. Res. Lett. 4, 510–512 (1977).
[CrossRef]

1976 (1)

P. J. Crutzen, “The Possible Importance of CSO for the Sulfate Layer of the Stratosphere,” Geophys. Res. Lett. 3, 73–76 (1976).
[CrossRef]

1971 (1)

Ballik, E. A.

Bandy, A. R.

E. E. Lewin, R. L. Taggart, M. Lalevic, A. R. Bandy, “Determination of Atmospheric Carbonyl Sulfide by Isotope Dilution Gas Chromatography/Mass Spectrometry,” Anal. Chem. 59, 1296–1301 (1987).
[CrossRef]

A. L. Torres, P. J. Maroulis, A. B. Goldberg, A. R. Bandy, “Atmospheric OCS Measurements on Project Gametag,” J. Geophys. Res. 85, 7357–7360 (1980).
[CrossRef]

P. J. Maroulis, A. L. Torres, A. R. Bandy, “Atmospheric Concentrations of Carbonyl Sulfide in the Southwestern and Eastern United States,” Geophys. Res. Lett. 4, 510–512 (1977).
[CrossRef]

Berg, W. W.

Bingemer, H. G.

H. G. Bingemer, S. Burgermeister, R. L. Zimmermann, H.-W. Georgii, “Atmospheric OCS: Evidence for a Contribution of Anthropogenic Sources?,” J. Geophys. Res. 95, 20,617–20,622 (1990).
[CrossRef]

Brimblecombe, P.

P. Brimblecombe, Air Composition and Chemistry (Cambridge U.P., London, 1986), p. 38.

Burgermeister, S.

H. G. Bingemer, S. Burgermeister, R. L. Zimmermann, H.-W. Georgii, “Atmospheric OCS: Evidence for a Contribution of Anthropogenic Sources?,” J. Geophys. Res. 95, 20,617–20,622 (1990).
[CrossRef]

Cadoff, B.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
[CrossRef]

Cahoon, D. R.

G. W. Sachse, R. C. Harriss, J. Fishman, G. F. Hill, D. R. Cahoon, “Carbon Monoxide Over the Amazon Basin During the 1985 Dry Season,” J. Geophys. Res. 93, 1422–1430 (1988).
[CrossRef]

Cai, Z-T.

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z-T. Cai, “Determination of Nitrogen Dioxide in Air Compressed Gas Mixtures by Quantitative Tunable Diode Laser Absorption Spectrometry and Chemiluminescence Detection,” Anal. Chem. 60, 394–403 (1988).
[CrossRef]

Camy-Peyret, C.

C. Camy-Peyret, J.-M. Flaud, C. P. Rinsland, M. A. H. Smith, V. M. Devi, A. Goldman, “Line Parameters for Ozone Hot Bands in the 4.8-μm Spectral Region,” J. Mol. Spectrosc. 139, 353–360 (1990).
[CrossRef]

J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Water Vapor Line Parameters for Microwave to Medium Infrared (Pergamon, New York, 1981).

Carlisle, C. B.

Carroll, M. A.

M. A. Carroll, “Measurements of OCS and CS2 in the Free Troposphere,” J. Geophys. Res. 90, 10,483–10,486 (1985).

Chan, K. R.

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous Oxide as a Dynamical Tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11,589–11,598 (1989).
[CrossRef]

Cooper, D. E.

Crutzen, P. J.

P. J. Crutzen, “The Possible Importance of CSO for the Sulfate Layer of the Stratosphere,” Geophys. Res. Lett. 3, 73–76 (1976).
[CrossRef]

Devi, V. M.

C. Camy-Peyret, J.-M. Flaud, C. P. Rinsland, M. A. H. Smith, V. M. Devi, A. Goldman, “Line Parameters for Ozone Hot Bands in the 4.8-μm Spectral Region,” J. Mol. Spectrosc. 139, 353–360 (1990).
[CrossRef]

Dickerson, R.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
[CrossRef]

Dorko, W.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
[CrossRef]

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z-T. Cai, “Determination of Nitrogen Dioxide in Air Compressed Gas Mixtures by Quantitative Tunable Diode Laser Absorption Spectrometry and Chemiluminescence Detection,” Anal. Chem. 60, 394–403 (1988).
[CrossRef]

Drummond, J. R.

Elkins, J. W.

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z-T. Cai, “Determination of Nitrogen Dioxide in Air Compressed Gas Mixtures by Quantitative Tunable Diode Laser Absorption Spectrometry and Chemiluminescence Detection,” Anal. Chem. 60, 394–403 (1988).
[CrossRef]

El-Sherbiny, M.

Fehsenfeld, F. C.

F. C. Fehsenfeld et al., “Intercomparison of NO2 Measurement Techniques,” J. Geophys. Res. 95, 3579–3597 (1990).
[CrossRef]

Fishman, J.

G. W. Sachse, R. C. Harriss, J. Fishman, G. F. Hill, D. R. Cahoon, “Carbon Monoxide Over the Amazon Basin During the 1985 Dry Season,” J. Geophys. Res. 93, 1422–1430 (1988).
[CrossRef]

Flaud, J.-M.

C. Camy-Peyret, J.-M. Flaud, C. P. Rinsland, M. A. H. Smith, V. M. Devi, A. Goldman, “Line Parameters for Ozone Hot Bands in the 4.8-μm Spectral Region,” J. Mol. Spectrosc. 139, 353–360 (1990).
[CrossRef]

J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Water Vapor Line Parameters for Microwave to Medium Infrared (Pergamon, New York, 1981).

Fox, J.

Fried, A.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
[CrossRef]

A. Fried, J. R. Drummond, B. Henry, J. Fox, “Reduction of Interference Fringes in Small Multipass Absorption Cells by Pressure Modulation,” Appl. Opt. 29, 900–902 (1990).
[CrossRef] [PubMed]

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z-T. Cai, “Determination of Nitrogen Dioxide in Air Compressed Gas Mixtures by Quantitative Tunable Diode Laser Absorption Spectrometry and Chemiluminescence Detection,” Anal. Chem. 60, 394–403 (1988).
[CrossRef]

A. Fried, R. Sams, W. W. Berg, “Application of Tunable Diode Laser Absorption for Trace Stratospheric Measurements of HCl: Laboratory Results,” Appl. Opt. 23, 1867–1880 (1984).
[CrossRef] [PubMed]

Garside, B. K.

Georgii, H.-W.

H. G. Bingemer, S. Burgermeister, R. L. Zimmermann, H.-W. Georgii, “Atmospheric OCS: Evidence for a Contribution of Anthropogenic Sources?,” J. Geophys. Res. 95, 20,617–20,622 (1990).
[CrossRef]

Goldberg, A. B.

A. L. Torres, P. J. Maroulis, A. B. Goldberg, A. R. Bandy, “Atmospheric OCS Measurements on Project Gametag,” J. Geophys. Res. 85, 7357–7360 (1980).
[CrossRef]

Golden, D. M.

M. A. Tolbert, M. J. Rossi, D. M. Golden, “Heterogeneous Interactions of Chlorine Nitrate, Hydrogen Chloride, and Nitric Acid with Sulfuric Acid Surfaces at Stratospheric Temperatures,” Geophys. Res. Lett. 15, 847–850 (1988).
[CrossRef]

Goldman, A.

C. Camy-Peyret, J.-M. Flaud, C. P. Rinsland, M. A. H. Smith, V. M. Devi, A. Goldman, “Line Parameters for Ozone Hot Bands in the 4.8-μm Spectral Region,” J. Mol. Spectrosc. 139, 353–360 (1990).
[CrossRef]

Hamill, P.

R. P. Turco, R. C. Whitten, O. B. Toon, J. B. Pollack, P. Hamill, “OCS, Stratospheric Aerosols and Climate,” Nature London 283, 283–286 (1980).
[CrossRef]

O. B. Toon, R. P. Turco, P. Hamill, C. S. Kiang, R. C. Whitten, “A One-Dimensional Model Describing Aerosol Formation and Evolution in the Stratosphere: II. Sensitivity Studies and Comparison with Observations,” J. Atmos. Sci. 36, 718–736 (1979).
[CrossRef]

Harris, G. W.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurements of Trace Gases,” J. Geophys. Res. 95, 10,147–10,153 (1990).
[CrossRef]

Harriss, R. C.

G. W. Sachse, R. C. Harriss, J. Fishman, G. F. Hill, D. R. Cahoon, “Carbon Monoxide Over the Amazon Basin During the 1985 Dry Season,” J. Geophys. Res. 93, 1422–1430 (1988).
[CrossRef]

Hastie, D. R.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurements of Trace Gases,” J. Geophys. Res. 95, 10,147–10,153 (1990).
[CrossRef]

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A–364A (1983).
[PubMed]

Henry, B.

Hill, G. F.

G. W. Sachse, R. C. Harriss, J. Fishman, G. F. Hill, D. R. Cahoon, “Carbon Monoxide Over the Amazon Basin During the 1985 Dry Season,” J. Geophys. Res. 93, 1422–1430 (1988).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-Response, High-Precision Carbon Monoxide Sensor Using a Tunable Diode Laser Absorption Technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Hofmann, D. J.

D. J. Hofmann, “Perturbations to the Global Atmosphere Associated with the El Chichon Volcanic Eruption of 1982,” Rev. Geophys. 25, 743–759 (1987).
[CrossRef]

D. J. Hofmann, J. M. Rosen, “Stratospheric Sulfuric Acid Layer: Evidence for an Anthropogenic Component,” Science 208, 1368–1370 (1980).
[CrossRef] [PubMed]

Horn, D.

Hoyt, S. D.

R. A. Rasmussen, M. A. K. Khalil, S. D. Hoyt, “The Oceanic Source of Carbonyl Sulfide (OCS),” Atmos. Environ. 16, 1591–1594 (1982).
[CrossRef]

Iguchi, T.

T. Iguchi, “Modulation Waveforms for Second-Harmonic Detection with Tunable Diode Lasers,” J. Opt. Soc. Am. B 3, 419–423 (1986).
[CrossRef]

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A–364A (1983).
[PubMed]

Jennings, D. E.

Karecki, D. R.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurements of Trace Gases,” J. Geophys. Res. 95, 10,147–10,153 (1990).
[CrossRef]

Khalil, M. A. K.

R. A. Rasmussen, M. A. K. Khalil, S. D. Hoyt, “The Oceanic Source of Carbonyl Sulfide (OCS),” Atmos. Environ. 16, 1591–1594 (1982).
[CrossRef]

Kiang, C. S.

O. B. Toon, R. P. Turco, P. Hamill, C. S. Kiang, R. C. Whitten, “A One-Dimensional Model Describing Aerosol Formation and Evolution in the Stratosphere: II. Sensitivity Studies and Comparison with Observations,” J. Atmos. Sci. 36, 718–736 (1979).
[CrossRef]

Ko, M. K. W.

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, “Antarctic Chlorine Chemistry: Possible Global Implications,” Geophys. Res. Lett. 15, 257–260 (1988).
[CrossRef]

N. D. Sze, M. K. W. Ko, “Photochemistry of COS, CS2, CH3SCH3, and H2S: Implications for the Atmospheric Sulfur Cycle,” Atmos. Environ. 14, 1223–1239 (1980).
[CrossRef]

Lalevic, M.

E. E. Lewin, R. L. Taggart, M. Lalevic, A. R. Bandy, “Determination of Atmospheric Carbonyl Sulfide by Isotope Dilution Gas Chromatography/Mass Spectrometry,” Anal. Chem. 59, 1296–1301 (1987).
[CrossRef]

Lewin, E. E.

E. E. Lewin, R. L. Taggart, M. Lalevic, A. R. Bandy, “Determination of Atmospheric Carbonyl Sulfide by Isotope Dilution Gas Chromatography/Mass Spectrometry,” Anal. Chem. 59, 1296–1301 (1987).
[CrossRef]

Loewenstein, M.

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous Oxide as a Dynamical Tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11,589–11,598 (1989).
[CrossRef]

Mackay, G. I.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurements of Trace Gases,” J. Geophys. Res. 95, 10,147–10,153 (1990).
[CrossRef]

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A–364A (1983).
[PubMed]

Maroulis, P. J.

A. L. Torres, P. J. Maroulis, A. B. Goldberg, A. R. Bandy, “Atmospheric OCS Measurements on Project Gametag,” J. Geophys. Res. 85, 7357–7360 (1980).
[CrossRef]

P. J. Maroulis, A. L. Torres, A. R. Bandy, “Atmospheric Concentrations of Carbonyl Sulfide in the Southwestern and Eastern United States,” Geophys. Res. Lett. 4, 510–512 (1977).
[CrossRef]

May, R. D.

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, JNO2, CH4, H2O, and CO2 in the 40–26 km Region Using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

Nunnermacker, L.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
[CrossRef]

Penkett, S. A.

F. J. Sandalls, S. A. Penkett, “Measurements of Carbonyl Sulfide and Carbon Disulfide in the Atmosphere,” Atmos. Environ. 11, 197–199 (1977).
[CrossRef]

Perry, M. G.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-Response, High-Precision Carbon Monoxide Sensor Using a Tunable Diode Laser Absorption Technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Pimentel, G. C.

Podolske, J. R.

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous Oxide as a Dynamical Tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11,589–11,598 (1989).
[CrossRef]

Pollack, J. B.

R. P. Turco, R. C. Whitten, O. B. Toon, J. B. Pollack, P. Hamill, “OCS, Stratospheric Aerosols and Climate,” Nature London 283, 283–286 (1980).
[CrossRef]

Rasmussen, R. A.

R. A. Rasmussen, M. A. K. Khalil, S. D. Hoyt, “The Oceanic Source of Carbonyl Sulfide (OCS),” Atmos. Environ. 16, 1591–1594 (1982).
[CrossRef]

Reid, J.

Ridley, B. A.

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A–364A (1983).
[PubMed]

Rinsland, C. P.

C. Camy-Peyret, J.-M. Flaud, C. P. Rinsland, M. A. H. Smith, V. M. Devi, A. Goldman, “Line Parameters for Ozone Hot Bands in the 4.8-μm Spectral Region,” J. Mol. Spectrosc. 139, 353–360 (1990).
[CrossRef]

Rodriguez, J. M.

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, “Antarctic Chlorine Chemistry: Possible Global Implications,” Geophys. Res. Lett. 15, 257–260 (1988).
[CrossRef]

Rosen, J. M.

D. J. Hofmann, J. M. Rosen, “Stratospheric Sulfuric Acid Layer: Evidence for an Anthropogenic Component,” Science 208, 1368–1370 (1980).
[CrossRef] [PubMed]

Rossi, M. J.

M. A. Tolbert, M. J. Rossi, D. M. Golden, “Heterogeneous Interactions of Chlorine Nitrate, Hydrogen Chloride, and Nitric Acid with Sulfuric Acid Surfaces at Stratospheric Temperatures,” Geophys. Res. Lett. 15, 847–850 (1988).
[CrossRef]

Rothman, L. S.

Sachse, G. W.

G. W. Sachse, R. C. Harriss, J. Fishman, G. F. Hill, D. R. Cahoon, “Carbon Monoxide Over the Amazon Basin During the 1985 Dry Season,” J. Geophys. Res. 93, 1422–1430 (1988).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-Response, High-Precision Carbon Monoxide Sensor Using a Tunable Diode Laser Absorption Technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Sams, R.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
[CrossRef]

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z-T. Cai, “Determination of Nitrogen Dioxide in Air Compressed Gas Mixtures by Quantitative Tunable Diode Laser Absorption Spectrometry and Chemiluminescence Detection,” Anal. Chem. 60, 394–403 (1988).
[CrossRef]

A. Fried, R. Sams, W. W. Berg, “Application of Tunable Diode Laser Absorption for Trace Stratospheric Measurements of HCl: Laboratory Results,” Appl. Opt. 23, 1867–1880 (1984).
[CrossRef] [PubMed]

Sandalls, F. J.

F. J. Sandalls, S. A. Penkett, “Measurements of Carbonyl Sulfide and Carbon Disulfide in the Atmosphere,” Atmos. Environ. 11, 197–199 (1977).
[CrossRef]

Schiff, H. I.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurements of Trace Gases,” J. Geophys. Res. 95, 10,147–10,153 (1990).
[CrossRef]

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A–364A (1983).
[PubMed]

Silver, J. A.

Smith, M. A. H.

C. Camy-Peyret, J.-M. Flaud, C. P. Rinsland, M. A. H. Smith, V. M. Devi, A. Goldman, “Line Parameters for Ozone Hot Bands in the 4.8-μm Spectral Region,” J. Mol. Spectrosc. 139, 353–360 (1990).
[CrossRef]

Stanton, A. C.

Strahan, S. E.

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous Oxide as a Dynamical Tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11,589–11,598 (1989).
[CrossRef]

Sze, N. D.

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, “Antarctic Chlorine Chemistry: Possible Global Implications,” Geophys. Res. Lett. 15, 257–260 (1988).
[CrossRef]

N. D. Sze, M. K. W. Ko, “Photochemistry of COS, CS2, CH3SCH3, and H2S: Implications for the Atmospheric Sulfur Cycle,” Atmos. Environ. 14, 1223–1239 (1980).
[CrossRef]

Taggart, R. L.

E. E. Lewin, R. L. Taggart, M. Lalevic, A. R. Bandy, “Determination of Atmospheric Carbonyl Sulfide by Isotope Dilution Gas Chromatography/Mass Spectrometry,” Anal. Chem. 59, 1296–1301 (1987).
[CrossRef]

Tolbert, M. A.

M. A. Tolbert, M. J. Rossi, D. M. Golden, “Heterogeneous Interactions of Chlorine Nitrate, Hydrogen Chloride, and Nitric Acid with Sulfuric Acid Surfaces at Stratospheric Temperatures,” Geophys. Res. Lett. 15, 847–850 (1988).
[CrossRef]

Toon, O. B.

R. P. Turco, R. C. Whitten, O. B. Toon, J. B. Pollack, P. Hamill, “OCS, Stratospheric Aerosols and Climate,” Nature London 283, 283–286 (1980).
[CrossRef]

O. B. Toon, R. P. Turco, P. Hamill, C. S. Kiang, R. C. Whitten, “A One-Dimensional Model Describing Aerosol Formation and Evolution in the Stratosphere: II. Sensitivity Studies and Comparison with Observations,” J. Atmos. Sci. 36, 718–736 (1979).
[CrossRef]

Torres, A. L.

A. L. Torres, P. J. Maroulis, A. B. Goldberg, A. R. Bandy, “Atmospheric OCS Measurements on Project Gametag,” J. Geophys. Res. 85, 7357–7360 (1980).
[CrossRef]

P. J. Maroulis, A. L. Torres, A. R. Bandy, “Atmospheric Concentrations of Carbonyl Sulfide in the Southwestern and Eastern United States,” Geophys. Res. Lett. 4, 510–512 (1977).
[CrossRef]

Toth, R. A.

J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Water Vapor Line Parameters for Microwave to Medium Infrared (Pergamon, New York, 1981).

Turco, R. P.

R. P. Turco, R. C. Whitten, O. B. Toon, J. B. Pollack, P. Hamill, “OCS, Stratospheric Aerosols and Climate,” Nature London 283, 283–286 (1980).
[CrossRef]

O. B. Toon, R. P. Turco, P. Hamill, C. S. Kiang, R. C. Whitten, “A One-Dimensional Model Describing Aerosol Formation and Evolution in the Stratosphere: II. Sensitivity Studies and Comparison with Observations,” J. Atmos. Sci. 36, 718–736 (1979).
[CrossRef]

Wade, L. O.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-Response, High-Precision Carbon Monoxide Sensor Using a Tunable Diode Laser Absorption Technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Webster, C. R.

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, JNO2, CH4, H2O, and CO2 in the 40–26 km Region Using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

C. R. Webster, “Brewster-Plate Spoiler: a Novel Method for Reducing the Amplitude of Interference Fringes that Limit Tunable-Laser Absorption Sensitivities,” J. Opt. Soc. Am. B 2, 1464–1470 (1985).
[CrossRef]

Whitten, R. C.

R. P. Turco, R. C. Whitten, O. B. Toon, J. B. Pollack, P. Hamill, “OCS, Stratospheric Aerosols and Climate,” Nature London 283, 283–286 (1980).
[CrossRef]

O. B. Toon, R. P. Turco, P. Hamill, C. S. Kiang, R. C. Whitten, “A One-Dimensional Model Describing Aerosol Formation and Evolution in the Stratosphere: II. Sensitivity Studies and Comparison with Observations,” J. Atmos. Sci. 36, 718–736 (1979).
[CrossRef]

Winstead, E.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
[CrossRef]

Yates, N.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
[CrossRef]

Zimmermann, R. L.

H. G. Bingemer, S. Burgermeister, R. L. Zimmermann, H.-W. Georgii, “Atmospheric OCS: Evidence for a Contribution of Anthropogenic Sources?,” J. Geophys. Res. 95, 20,617–20,622 (1990).
[CrossRef]

Anal. Chem. (2)

E. E. Lewin, R. L. Taggart, M. Lalevic, A. R. Bandy, “Determination of Atmospheric Carbonyl Sulfide by Isotope Dilution Gas Chromatography/Mass Spectrometry,” Anal. Chem. 59, 1296–1301 (1987).
[CrossRef]

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z-T. Cai, “Determination of Nitrogen Dioxide in Air Compressed Gas Mixtures by Quantitative Tunable Diode Laser Absorption Spectrometry and Chemiluminescence Detection,” Anal. Chem. 60, 394–403 (1988).
[CrossRef]

Appl. Opt. (8)

Atmos. Environ. (3)

N. D. Sze, M. K. W. Ko, “Photochemistry of COS, CS2, CH3SCH3, and H2S: Implications for the Atmospheric Sulfur Cycle,” Atmos. Environ. 14, 1223–1239 (1980).
[CrossRef]

F. J. Sandalls, S. A. Penkett, “Measurements of Carbonyl Sulfide and Carbon Disulfide in the Atmosphere,” Atmos. Environ. 11, 197–199 (1977).
[CrossRef]

R. A. Rasmussen, M. A. K. Khalil, S. D. Hoyt, “The Oceanic Source of Carbonyl Sulfide (OCS),” Atmos. Environ. 16, 1591–1594 (1982).
[CrossRef]

Environ. Sci. Technol. (1)

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A–364A (1983).
[PubMed]

Geophys. Res. Lett. (4)

M. A. Tolbert, M. J. Rossi, D. M. Golden, “Heterogeneous Interactions of Chlorine Nitrate, Hydrogen Chloride, and Nitric Acid with Sulfuric Acid Surfaces at Stratospheric Temperatures,” Geophys. Res. Lett. 15, 847–850 (1988).
[CrossRef]

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, “Antarctic Chlorine Chemistry: Possible Global Implications,” Geophys. Res. Lett. 15, 257–260 (1988).
[CrossRef]

P. J. Maroulis, A. L. Torres, A. R. Bandy, “Atmospheric Concentrations of Carbonyl Sulfide in the Southwestern and Eastern United States,” Geophys. Res. Lett. 4, 510–512 (1977).
[CrossRef]

P. J. Crutzen, “The Possible Importance of CSO for the Sulfate Layer of the Stratosphere,” Geophys. Res. Lett. 3, 73–76 (1976).
[CrossRef]

J. Atmos. Sci. (1)

O. B. Toon, R. P. Turco, P. Hamill, C. S. Kiang, R. C. Whitten, “A One-Dimensional Model Describing Aerosol Formation and Evolution in the Stratosphere: II. Sensitivity Studies and Comparison with Observations,” J. Atmos. Sci. 36, 718–736 (1979).
[CrossRef]

J. Geophys. Res. (10)

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurements of Trace Gases,” J. Geophys. Res. 95, 10,147–10,153 (1990).
[CrossRef]

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous Oxide as a Dynamical Tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11,589–11,598 (1989).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, JNO2, CH4, H2O, and CO2 in the 40–26 km Region Using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-Response, High-Precision Carbon Monoxide Sensor Using a Tunable Diode Laser Absorption Technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

G. W. Sachse, R. C. Harriss, J. Fishman, G. F. Hill, D. R. Cahoon, “Carbon Monoxide Over the Amazon Basin During the 1985 Dry Season,” J. Geophys. Res. 93, 1422–1430 (1988).
[CrossRef]

A. L. Torres, P. J. Maroulis, A. B. Goldberg, A. R. Bandy, “Atmospheric OCS Measurements on Project Gametag,” J. Geophys. Res. 85, 7357–7360 (1980).
[CrossRef]

M. A. Carroll, “Measurements of OCS and CS2 in the Free Troposphere,” J. Geophys. Res. 90, 10,483–10,486 (1985).

H. G. Bingemer, S. Burgermeister, R. L. Zimmermann, H.-W. Georgii, “Atmospheric OCS: Evidence for a Contribution of Anthropogenic Sources?,” J. Geophys. Res. 95, 20,617–20,622 (1990).
[CrossRef]

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, E. Winstead, “Reference NO2 Calibration System for Ground-Based Intercomparisons During NASA’s GTE/CITE II Mission,” J. Geophys. Res. 95, 10,139–10,146 (1990).
[CrossRef]

F. C. Fehsenfeld et al., “Intercomparison of NO2 Measurement Techniques,” J. Geophys. Res. 95, 3579–3597 (1990).
[CrossRef]

J. Mol. Spectrosc. (1)

C. Camy-Peyret, J.-M. Flaud, C. P. Rinsland, M. A. H. Smith, V. M. Devi, A. Goldman, “Line Parameters for Ozone Hot Bands in the 4.8-μm Spectral Region,” J. Mol. Spectrosc. 139, 353–360 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature London (1)

R. P. Turco, R. C. Whitten, O. B. Toon, J. B. Pollack, P. Hamill, “OCS, Stratospheric Aerosols and Climate,” Nature London 283, 283–286 (1980).
[CrossRef]

Opt. Lett. (1)

Rev. Geophys. (1)

D. J. Hofmann, “Perturbations to the Global Atmosphere Associated with the El Chichon Volcanic Eruption of 1982,” Rev. Geophys. 25, 743–759 (1987).
[CrossRef]

Science (1)

D. J. Hofmann, J. M. Rosen, “Stratospheric Sulfuric Acid Layer: Evidence for an Anthropogenic Component,” Science 208, 1368–1370 (1980).
[CrossRef] [PubMed]

Other (2)

P. Brimblecombe, Air Composition and Chemistry (Cambridge U.P., London, 1986), p. 38.

J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Water Vapor Line Parameters for Microwave to Medium Infrared (Pergamon, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the optical layout and the sampling system. The z-axis is perpendicular to the plane of this figure.

Fig. 2
Fig. 2

Multichambered permeation calibration system.

Fig. 3
Fig. 3

Schematic of the electronics. The letters refer to input waveforms as further shown in Figs. 4 and 5.

Fig. 4
Fig. 4

Schematic of the signal generator and data acquisition module (SGDA) showing computer control and timing inputs. The letters refer to the same waveforms as in Figs. 3 and 5. The components indicated in the dashed area are from a commercial data translation DT 5704 board.

Fig. 5
Fig. 5

Synchronous wavelength scan (sawtooth) and modulation (quasisquare wave) and data acquisition timing. The letters refer to waveforms at the points indicated in Figs. 3 and 4. By synchronizing the integration time with the 1f modulation cycle, detection of demodulated 1f signals (waveform D) is eliminated during the integration phase leaving only the average value of the demodulated 2f signals.

Fig. 6
Fig. 6

Calculated second harmonic signals for the R(22) line of OCS at 2070.8595 cm−1 and for potential CO2 and O3 interferences. These calculations are based on our experimental modulation parameters: a quasisquare wave modulation waveform with a half-modulation amplitude of 0.007 cm−1. The spectroscopic parameters used in these calculations are further discussed in the text: (a) displays the results for 500-pptv OCS alone; (b) also includes 100 ppbv of O3 and 350 ppmv of CO2, concentrations representative of all but the most polluted situations.

Fig. 7
Fig. 7

Free running system wavelength stability without locking or wavelength shifting. This figure displays two ambient OCS scans around 550 pptv taken 42 min apart, indicating a wavelength stability of ±6.3 × 10−4 cm−1. Each scan was averaged for 2 min.

Fig. 8
Fig. 8

(a) Two second harmonic baseline sets taken 1 h apart. Each set is comprised of two individual baseline scans averaged for 2 min. The profiles shown were taken from the raw averages without further data manipulation. The high frequency noise is electronic noise passed by our lock-in amplifiers. (b) The results of line fitting all four baselines in (a) as well as a 506-pptv ambient OCS scan to reference standards in the 1–2-ppbv range, as further discussed in the text. The vertical scale is the same as in (a). Both the high and low frequency noise is effectively eliminated revealing the presence of residual OCS outgassing from the White cell. (c) Second harmonic baseline for one of the scans shown in (a) and (b). The vertical scale here is expanded 4.6 times. One profile displays the original data with the high frequency noise eliminated using a five-point smoothing routine. The other profile shows the fitting results. A comparison of the two reveals common structure, suggesting that a fitting artifact is not the cause.

Fig. 9
Fig. 9

(a) Two second harmonic baseline scans taken 10 min apart. These scans show a growing interference fringe. (b) The results of fitting the same two baseline scans and a 547-pptv ambient OCS scan to a higher concentration reference spectrum. The vertical scale is the same as in (a). This shows the discriminatory power of line fitting against a time varying interference fringe. The feature near channel 163 in the ambient scan is a result of ~24 pptv of OC34S.

Fig. 10
Fig. 10

Signal response from various OCS standards as a function of time. OCS concentration changes as small as 14 pptv can clearly be seen.

Fig. 11
Fig. 11

Tunable diode laser signal stability as a function of time for a 600-pptv OCS standard flowing through our White cell. The resulting signal response from individual 2-min averages is displayed as a percentage deviation from the mean of all the data. Profile A displays the results using our rudimentary peak find routine. Profile B shows the improved precision using line fitting. The standard deviation improves from 0.82% to 0.35% by line fitting.

Fig. 12
Fig. 12

Tunable diode laser signal stability over a 2-h time period for a 30-ppbv NO2 standard flowing through our White cell. A different laser with improved spatial characteristics was employed here. The NO2 line absorbs at 1600.2195cm−1. These conditions were chosen to produce a line center absorbance of 5.7 × 10−4, identical to that produced by 500-pptv ambient OCS. The results displayed were based on our rudimentary peak find routine and demonstrates high precision when a laser with good spatial quality is employed.

Fig. 13
Fig. 13

Continuous ambient OCS measurements, reduced to dry mixing ratios, taken on 31 Oct. 1989 outside our laboratory at NCAR starting at 13:32 MDST. The actual local time was 1 h less (MST). Individual measurement scans were averaged for 2 min and the results were line fit without any baseline subtraction, as discussed in the text. A calibration sequence was recorded during the gap in the middle, the results of which agreed to within 1.7% of that obtained at the start. Likewise, baselines recorded at the start and during this gap were in agreement to within 2 pptv. This figure shows temporal OCS variability as high as ±10% and as low as ±3%.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Y i = a + b X i .
a = ( Σ Y i ) ( Σ X i 2 ) - ( Σ X i ) ( Σ X i Y i ) N ( Σ X i 2 ) - ( Σ X i ) 2 ,
b = ( Σ Y i ) ( Σ X i ) - N ( Σ X i Y i ) ( Σ X i ) 2 - N ( Σ X i 2 ) .

Metrics