Abstract

Confocal scanning methods are modified to allow 3-D imaging of objects embedded within thick diffusing media. A method called exfoliative deconvolution is used to sharpen a volume image in which the blur is depth variant. Experimental results are presented.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Dilworth, E. N. Leith, J. L. Lopez, “Imaging Absorbing Structures within Thick Diffusing Media,” Appl. Opt. 29, 691–698 (1990).
    [CrossRef] [PubMed]
  2. B. K. P. HornRobot Vision (McGraw-Hill, New York, 1986).
  3. A. Rosenfield, A. C. Kak, Digital Picture Processing: Vol. 1 (Academic, New York, 1982).
  4. D. E. Dudgeon, R. M. Mersereau, Multidimensional Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1984).

1990 (1)

Dilworth, D. D.

Dudgeon, D. E.

D. E. Dudgeon, R. M. Mersereau, Multidimensional Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1984).

Horn, B. K. P.

B. K. P. HornRobot Vision (McGraw-Hill, New York, 1986).

Kak, A. C.

A. Rosenfield, A. C. Kak, Digital Picture Processing: Vol. 1 (Academic, New York, 1982).

Leith, E. N.

Lopez, J. L.

Mersereau, R. M.

D. E. Dudgeon, R. M. Mersereau, Multidimensional Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1984).

Rosenfield, A.

A. Rosenfield, A. C. Kak, Digital Picture Processing: Vol. 1 (Academic, New York, 1982).

Appl. Opt. (1)

Other (3)

B. K. P. HornRobot Vision (McGraw-Hill, New York, 1986).

A. Rosenfield, A. C. Kak, Digital Picture Processing: Vol. 1 (Academic, New York, 1982).

D. E. Dudgeon, R. M. Mersereau, Multidimensional Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Orientation of model planes.

Fig. 2
Fig. 2

Fiber optic confocal scanner.

Fig. 3
Fig. 3

Image disparity vs object depth.

Fig. 4
Fig. 4

Five-stripe object: on-axis and off-axis confocal images.

Fig. 5
Fig. 5

Pinholes: profiles of confocal and filter images.

Fig. 6
Fig. 6

Five-disk object: confocal and deconvolution images.

Fig. 7
Fig. 7

Five-disk object: profiles of confocal image.

Fig. 8
Fig. 8

Five-disk object: profiles of filtered image.

Fig. 9
Fig. 9

Human breast tissue: on-axis and off-axis confocal images.

Tables (4)

Tables Icon

Table I Mapping of Image Disparity to Object Depth

Tables Icon

Table II Five-Stripe Object: Disparity and Depth Results

Tables Icon

Table III Pinholes: PSF Width of Confocal and Filter Images

Tables Icon

Table IV Five-Disk Object: Confocal and Filtered PSF Width Comparison

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i 0 = t 21 / 2 π ( x 2 2 + y 2 2 + t 21 2 ) 3 / 2 t 10 / 2 π ( x 0 2 + y 0 2 + t 10 2 ) 3 / 2 ,
i 0 = t 21 / 2 π ( x 0 2 + y 0 2 + t 21 2 ) 3 / 2 t 10 / 2 π ( x 0 2 + y 0 2 + t 10 2 ) ,
i 0 = t 21 / 2 π ( x 0 2 + y 0 2 + t 21 2 ) 3 / 2 t 10 / 2 π [ ( x 0 + Δ x ) 2 + ( y 0 + Δ y ) 2 + t 10 2 ] 3 / 2 .

Metrics