Abstract

The mass density normalized absorption and total scattering coefficients have been measured using in situ techniques at selected wavelengths from the visible to ~1 cm for soot generated by the open combustion of diesel fuel. Particle morphologies are complex although similar to those of soots of other hydrocarbons and methods of generation. An ellipsoidal model has been applied as an approximation to the often multiconnected, chainlike aerosol and then compared with the measured results. The experimental results show an approximate (λ)−1 dependence over more than five decades of wavelength data. There is only general agreement with the simplified calculations in this feature as well as in the magnitude.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Kondratyev, M. A. Prokofyev, “Atmospheric Aerosol and Its Climatic Effects,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 902–908 (1984).
  2. J. B. Pollack, O. B. Toon, D. Weidman, “Radiative Properties of the Background Stratospheric Aerosols and Implications for Perturbed Conditions,” Geophys. Res. Lett. 8, 26–34 (1981).
    [CrossRef]
  3. I. S. Rasool, S. H. Schneider, “Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate,” Science 173, 138–141 (1981).
    [CrossRef]
  4. J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116–138 (1983).
    [CrossRef]
  5. Y. M. Timofeyev, S. P. Obraztsov, “Influence of Aerosols in Shaping the Outgoing Thermal Radiation,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 820–826 (1984).
  6. G. Yamamoto, M. Tanaka, “Increase of Global Albedo Due to Air Pollution,” J. Atmos. Sci. 29, 1405–1412 (1972).
    [CrossRef]
  7. R. W. Bergstrom, R. Viskanta, “Modeling of the Effects of Gaseous and Particulate Pollutants in the Urban Atmosphere. Part 1: Thermal Structure,” J. Appl. Meteorol. 12, 901–912 (1973).
    [CrossRef]
  8. A. P. Chavkovskiy, “Statistical Analysis of Optical Characteristics of the Tropospheric Aerosol Under Desert Conditions,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 648–653 (1984).
  9. L. B. Gabelko, Y. S. Lyubovtseva, “IR Absorption Index of the Atmospheric Aerosol,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 640–647 (1984).
  10. S. Chippett, W. A. Gray, “The Size and Optical Properties of Soot Particles,” Combust. Flame 31, 149–159 (1978).
    [CrossRef]
  11. V. P. Tomasselli, R. Rivera, D. C. Edewaard, K. D. Moller, “Infrared Optical Constants of Black Powders Determined from Reflection Measurements,” Appl. Opt. 20, 3961–3967 (1981).
    [CrossRef]
  12. J. D. Felske, T. T. Charalampopoulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivity of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263–283 (1984).
    [CrossRef]
  13. W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969).
    [CrossRef]
  14. W. D. Erickson, G. C. Williams, H. C. Hottel, “Light Scattering Measurements as seen in a Benzene-Air Flame,” Combust. Flame 8, 127–132 (1964).
    [CrossRef]
  15. P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719–729 (1968).
    [CrossRef]
  16. C. W. Bruce, N. M. Richardson, “Propagation at 10 μm Through Smoke Produced by Atmospheric Combustion of Diesel Fuel,” Appl. Opt. 22, 1051–1055 (1983).
    [CrossRef] [PubMed]
  17. C. W. Bruce, N. M. Richardson, “Millimeter Wave Gas/Aerosol Spectrophone and Application to Diesel Smoke,” Appl. Opt. 23, 13–15 (1984).
    [CrossRef] [PubMed]
  18. D. M. Roessler, F. R. Faxvog, “Optoacoustical Measurement of Optical Absorption in Acetylene Smoke,” J. Opt. Soc. Am. 69, 1699–1704 (1979).
    [CrossRef]
  19. D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon Variation with Air/Fuel Ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 57.
  20. H. A. Szymanski, IR-Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964), Chap. 5.
  21. L. S. Rothman et al., “The hitran Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  22. C. W. Bruce, R. E. Lee, “Millimeter Wavelength Absorption by Chlorodifluoromethane,” Technical Report, U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM 88002 (1987).
  23. J. J. Gallagher, D. P. Campbell, “Quantitative Absorption Measurements of Freon 22 at 94 GHz,” Final Technical Report, GIT Project No. A-4106, Georgia Institute of Technology, Atlanta, GA (1986).
  24. M. V. Berry, “Diffractals,” J. Phys. A: Math. Nucl. Gen. 12, 781–797 (1979).
    [CrossRef]
  25. H. G. E. Hentschel, “Fractal Dimension of Generalized Diffusion-Limited Aggregates,” Phys. Rev. Lett. 52, 212–215 (1984).
    [CrossRef]
  26. M. E. Cates, “Homogeneity and Spectral Dimension of Aggregation Fractals,” J. Phys. A: Math. Nucl. Gen. 17, L487–L489 (1984).
    [CrossRef]
  27. R. Jullien, M. Kolb, R. Botet, “Diffusion Limited Aggregation with Directed and Anisotropic Diffusion,” J. Phys. Paris 45, 395–399 (1984).
  28. G. W. Mulholland, R. J. Samson, R. D. Mountain, M. H. Ernst, “Cluster Size Distribution for Free Molecular Agglomeration,” Energy and Fuels 2, 481–486 (1988).
    [CrossRef]
  29. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), p. 70.
  30. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 141.
  31. O. Edoh, “The Optical Properties of Carbon,” Ph.D. Dissertation, U. Arizona/Tucson (1987).
  32. A. Borghesi, E. Bussoletti, L. Colangeli, A. Minafra, F. Rubini, “The Absorption Efficiency of Submicron Amorphous Carbon Particles Between 2.5 and 40 μm,” Infrared Phys. 23, 85–92 (1983).
    [CrossRef]
  33. M. R. Querry, “Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet,” Technical Report No. CROEC-CR-88009, Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD (1987).
  34. P. Delhaes, F. Carmona, “Physical Properties of Noncrystalline Carbons,” in Chemistry and Physics of Carbon, Vol. 17, P. L. Walker, P. A. Thrower, Eds. (Marcel Dekker, Inc, New York, 1981) p. 89–124.
  35. M. W. Williams, E. T. Arakawa, “Optical Properties of Glassy Carbon from 0 to 82 eV,” J. Appl. Phys. 43, 3460–3463 (1972).
    [CrossRef]
  36. N. E. Pedersen, J. C. Pederson, P. C. Waterman, “Absorption and Scattering by Conductive Fibers: Basic Theory and Comparison with Asymptotic Results,” Annual Report, Contract F49620-84-C-0045, Air Force Office of Scientific Research, Bolling AFB, DC (1985).
  37. K. A. Fuller, G. W. Kattawar, “Consummate Solution to the Problem of Classical Electromagnetic Scattering by an Ensemble of Spheres. I: Linear Chains,” Opt. Lett. 13, 90–92 (1988).
    [CrossRef] [PubMed]
  38. A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves From Two Concentric Spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
    [CrossRef]
  39. R. W. Fenn, H. Oser, “Scattering Properties of Concentric Soot-Water Spheres for Visible and Infrared Light,” Appl. Opt. 4, 1504–1509 (1965).
    [CrossRef]
  40. M. R. Querry, “Optical Properties of Natural Minerals and Other Materials in the 350–50,000 cm−1 Spectral Region,” Final Report, Contract DAAG-29-79-CO131, U.S. Army Research Office, Research Triangle Park, NC (1983).

1988 (2)

G. W. Mulholland, R. J. Samson, R. D. Mountain, M. H. Ernst, “Cluster Size Distribution for Free Molecular Agglomeration,” Energy and Fuels 2, 481–486 (1988).
[CrossRef]

K. A. Fuller, G. W. Kattawar, “Consummate Solution to the Problem of Classical Electromagnetic Scattering by an Ensemble of Spheres. I: Linear Chains,” Opt. Lett. 13, 90–92 (1988).
[CrossRef] [PubMed]

1987 (1)

1984 (9)

C. W. Bruce, N. M. Richardson, “Millimeter Wave Gas/Aerosol Spectrophone and Application to Diesel Smoke,” Appl. Opt. 23, 13–15 (1984).
[CrossRef] [PubMed]

J. D. Felske, T. T. Charalampopoulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivity of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263–283 (1984).
[CrossRef]

K. Y. Kondratyev, M. A. Prokofyev, “Atmospheric Aerosol and Its Climatic Effects,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 902–908 (1984).

Y. M. Timofeyev, S. P. Obraztsov, “Influence of Aerosols in Shaping the Outgoing Thermal Radiation,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 820–826 (1984).

A. P. Chavkovskiy, “Statistical Analysis of Optical Characteristics of the Tropospheric Aerosol Under Desert Conditions,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 648–653 (1984).

L. B. Gabelko, Y. S. Lyubovtseva, “IR Absorption Index of the Atmospheric Aerosol,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 640–647 (1984).

H. G. E. Hentschel, “Fractal Dimension of Generalized Diffusion-Limited Aggregates,” Phys. Rev. Lett. 52, 212–215 (1984).
[CrossRef]

M. E. Cates, “Homogeneity and Spectral Dimension of Aggregation Fractals,” J. Phys. A: Math. Nucl. Gen. 17, L487–L489 (1984).
[CrossRef]

R. Jullien, M. Kolb, R. Botet, “Diffusion Limited Aggregation with Directed and Anisotropic Diffusion,” J. Phys. Paris 45, 395–399 (1984).

1983 (3)

A. Borghesi, E. Bussoletti, L. Colangeli, A. Minafra, F. Rubini, “The Absorption Efficiency of Submicron Amorphous Carbon Particles Between 2.5 and 40 μm,” Infrared Phys. 23, 85–92 (1983).
[CrossRef]

C. W. Bruce, N. M. Richardson, “Propagation at 10 μm Through Smoke Produced by Atmospheric Combustion of Diesel Fuel,” Appl. Opt. 22, 1051–1055 (1983).
[CrossRef] [PubMed]

J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116–138 (1983).
[CrossRef]

1981 (3)

J. B. Pollack, O. B. Toon, D. Weidman, “Radiative Properties of the Background Stratospheric Aerosols and Implications for Perturbed Conditions,” Geophys. Res. Lett. 8, 26–34 (1981).
[CrossRef]

I. S. Rasool, S. H. Schneider, “Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate,” Science 173, 138–141 (1981).
[CrossRef]

V. P. Tomasselli, R. Rivera, D. C. Edewaard, K. D. Moller, “Infrared Optical Constants of Black Powders Determined from Reflection Measurements,” Appl. Opt. 20, 3961–3967 (1981).
[CrossRef]

1979 (2)

1978 (1)

S. Chippett, W. A. Gray, “The Size and Optical Properties of Soot Particles,” Combust. Flame 31, 149–159 (1978).
[CrossRef]

1973 (1)

R. W. Bergstrom, R. Viskanta, “Modeling of the Effects of Gaseous and Particulate Pollutants in the Urban Atmosphere. Part 1: Thermal Structure,” J. Appl. Meteorol. 12, 901–912 (1973).
[CrossRef]

1972 (2)

G. Yamamoto, M. Tanaka, “Increase of Global Albedo Due to Air Pollution,” J. Atmos. Sci. 29, 1405–1412 (1972).
[CrossRef]

M. W. Williams, E. T. Arakawa, “Optical Properties of Glassy Carbon from 0 to 82 eV,” J. Appl. Phys. 43, 3460–3463 (1972).
[CrossRef]

1969 (1)

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

1968 (1)

P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719–729 (1968).
[CrossRef]

1965 (1)

1964 (1)

W. D. Erickson, G. C. Williams, H. C. Hottel, “Light Scattering Measurements as seen in a Benzene-Air Flame,” Combust. Flame 8, 127–132 (1964).
[CrossRef]

1951 (1)

A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves From Two Concentric Spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Aden, A. L.

A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves From Two Concentric Spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Arakawa, E. T.

M. W. Williams, E. T. Arakawa, “Optical Properties of Glassy Carbon from 0 to 82 eV,” J. Appl. Phys. 43, 3460–3463 (1972).
[CrossRef]

Bergstrom, R. W.

R. W. Bergstrom, R. Viskanta, “Modeling of the Effects of Gaseous and Particulate Pollutants in the Urban Atmosphere. Part 1: Thermal Structure,” J. Appl. Meteorol. 12, 901–912 (1973).
[CrossRef]

Berry, M. V.

M. V. Berry, “Diffractals,” J. Phys. A: Math. Nucl. Gen. 12, 781–797 (1979).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 141.

Borghesi, A.

A. Borghesi, E. Bussoletti, L. Colangeli, A. Minafra, F. Rubini, “The Absorption Efficiency of Submicron Amorphous Carbon Particles Between 2.5 and 40 μm,” Infrared Phys. 23, 85–92 (1983).
[CrossRef]

Botet, R.

R. Jullien, M. Kolb, R. Botet, “Diffusion Limited Aggregation with Directed and Anisotropic Diffusion,” J. Phys. Paris 45, 395–399 (1984).

Bruce, C. W.

Bussoletti, E.

A. Borghesi, E. Bussoletti, L. Colangeli, A. Minafra, F. Rubini, “The Absorption Efficiency of Submicron Amorphous Carbon Particles Between 2.5 and 40 μm,” Infrared Phys. 23, 85–92 (1983).
[CrossRef]

Campbell, D. P.

J. J. Gallagher, D. P. Campbell, “Quantitative Absorption Measurements of Freon 22 at 94 GHz,” Final Technical Report, GIT Project No. A-4106, Georgia Institute of Technology, Atlanta, GA (1986).

Carmona, F.

P. Delhaes, F. Carmona, “Physical Properties of Noncrystalline Carbons,” in Chemistry and Physics of Carbon, Vol. 17, P. L. Walker, P. A. Thrower, Eds. (Marcel Dekker, Inc, New York, 1981) p. 89–124.

Cates, M. E.

M. E. Cates, “Homogeneity and Spectral Dimension of Aggregation Fractals,” J. Phys. A: Math. Nucl. Gen. 17, L487–L489 (1984).
[CrossRef]

Cess, R. D.

J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116–138 (1983).
[CrossRef]

Charalampopoulos, T. T.

J. D. Felske, T. T. Charalampopoulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivity of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263–283 (1984).
[CrossRef]

Chavkovskiy, A. P.

A. P. Chavkovskiy, “Statistical Analysis of Optical Characteristics of the Tropospheric Aerosol Under Desert Conditions,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 648–653 (1984).

Chippett, S.

S. Chippett, W. A. Gray, “The Size and Optical Properties of Soot Particles,” Combust. Flame 31, 149–159 (1978).
[CrossRef]

Coakley, J. A.

J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116–138 (1983).
[CrossRef]

Colangeli, L.

A. Borghesi, E. Bussoletti, L. Colangeli, A. Minafra, F. Rubini, “The Absorption Efficiency of Submicron Amorphous Carbon Particles Between 2.5 and 40 μm,” Infrared Phys. 23, 85–92 (1983).
[CrossRef]

Dalzell, W. H.

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Delhaes, P.

P. Delhaes, F. Carmona, “Physical Properties of Noncrystalline Carbons,” in Chemistry and Physics of Carbon, Vol. 17, P. L. Walker, P. A. Thrower, Eds. (Marcel Dekker, Inc, New York, 1981) p. 89–124.

Edewaard, D. C.

Edoh, O.

O. Edoh, “The Optical Properties of Carbon,” Ph.D. Dissertation, U. Arizona/Tucson (1987).

Erickson, W. D.

W. D. Erickson, G. C. Williams, H. C. Hottel, “Light Scattering Measurements as seen in a Benzene-Air Flame,” Combust. Flame 8, 127–132 (1964).
[CrossRef]

Ernst, M. H.

G. W. Mulholland, R. J. Samson, R. D. Mountain, M. H. Ernst, “Cluster Size Distribution for Free Molecular Agglomeration,” Energy and Fuels 2, 481–486 (1988).
[CrossRef]

Faxvog, F. R.

D. M. Roessler, F. R. Faxvog, “Optoacoustical Measurement of Optical Absorption in Acetylene Smoke,” J. Opt. Soc. Am. 69, 1699–1704 (1979).
[CrossRef]

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon Variation with Air/Fuel Ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 57.

Felske, J. D.

J. D. Felske, T. T. Charalampopoulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivity of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263–283 (1984).
[CrossRef]

Fenn, R. W.

Foster, P. J.

P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719–729 (1968).
[CrossRef]

Fuller, K. A.

Gabelko, L. B.

L. B. Gabelko, Y. S. Lyubovtseva, “IR Absorption Index of the Atmospheric Aerosol,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 640–647 (1984).

Gallagher, J. J.

J. J. Gallagher, D. P. Campbell, “Quantitative Absorption Measurements of Freon 22 at 94 GHz,” Final Technical Report, GIT Project No. A-4106, Georgia Institute of Technology, Atlanta, GA (1986).

Gray, W. A.

S. Chippett, W. A. Gray, “The Size and Optical Properties of Soot Particles,” Combust. Flame 31, 149–159 (1978).
[CrossRef]

Hentschel, H. G. E.

H. G. E. Hentschel, “Fractal Dimension of Generalized Diffusion-Limited Aggregates,” Phys. Rev. Lett. 52, 212–215 (1984).
[CrossRef]

Hottel, H. C.

W. D. Erickson, G. C. Williams, H. C. Hottel, “Light Scattering Measurements as seen in a Benzene-Air Flame,” Combust. Flame 8, 127–132 (1964).
[CrossRef]

Howarth, C. R.

P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719–729 (1968).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 141.

Hura, H. S.

J. D. Felske, T. T. Charalampopoulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivity of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263–283 (1984).
[CrossRef]

Jullien, R.

R. Jullien, M. Kolb, R. Botet, “Diffusion Limited Aggregation with Directed and Anisotropic Diffusion,” J. Phys. Paris 45, 395–399 (1984).

Kattawar, G. W.

Kerker, M.

A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves From Two Concentric Spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Kolb, M.

R. Jullien, M. Kolb, R. Botet, “Diffusion Limited Aggregation with Directed and Anisotropic Diffusion,” J. Phys. Paris 45, 395–399 (1984).

Kondratyev, K. Y.

K. Y. Kondratyev, M. A. Prokofyev, “Atmospheric Aerosol and Its Climatic Effects,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 902–908 (1984).

Lee, R. E.

C. W. Bruce, R. E. Lee, “Millimeter Wavelength Absorption by Chlorodifluoromethane,” Technical Report, U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM 88002 (1987).

Lyubovtseva, Y. S.

L. B. Gabelko, Y. S. Lyubovtseva, “IR Absorption Index of the Atmospheric Aerosol,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 640–647 (1984).

Minafra, A.

A. Borghesi, E. Bussoletti, L. Colangeli, A. Minafra, F. Rubini, “The Absorption Efficiency of Submicron Amorphous Carbon Particles Between 2.5 and 40 μm,” Infrared Phys. 23, 85–92 (1983).
[CrossRef]

Moller, K. D.

Mountain, R. D.

G. W. Mulholland, R. J. Samson, R. D. Mountain, M. H. Ernst, “Cluster Size Distribution for Free Molecular Agglomeration,” Energy and Fuels 2, 481–486 (1988).
[CrossRef]

Mulholland, G. W.

G. W. Mulholland, R. J. Samson, R. D. Mountain, M. H. Ernst, “Cluster Size Distribution for Free Molecular Agglomeration,” Energy and Fuels 2, 481–486 (1988).
[CrossRef]

Obraztsov, S. P.

Y. M. Timofeyev, S. P. Obraztsov, “Influence of Aerosols in Shaping the Outgoing Thermal Radiation,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 820–826 (1984).

Oser, H.

Pedersen, N. E.

N. E. Pedersen, J. C. Pederson, P. C. Waterman, “Absorption and Scattering by Conductive Fibers: Basic Theory and Comparison with Asymptotic Results,” Annual Report, Contract F49620-84-C-0045, Air Force Office of Scientific Research, Bolling AFB, DC (1985).

Pederson, J. C.

N. E. Pedersen, J. C. Pederson, P. C. Waterman, “Absorption and Scattering by Conductive Fibers: Basic Theory and Comparison with Asymptotic Results,” Annual Report, Contract F49620-84-C-0045, Air Force Office of Scientific Research, Bolling AFB, DC (1985).

Pollack, J. B.

J. B. Pollack, O. B. Toon, D. Weidman, “Radiative Properties of the Background Stratospheric Aerosols and Implications for Perturbed Conditions,” Geophys. Res. Lett. 8, 26–34 (1981).
[CrossRef]

Prokofyev, M. A.

K. Y. Kondratyev, M. A. Prokofyev, “Atmospheric Aerosol and Its Climatic Effects,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 902–908 (1984).

Querry, M. R.

M. R. Querry, “Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet,” Technical Report No. CROEC-CR-88009, Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD (1987).

M. R. Querry, “Optical Properties of Natural Minerals and Other Materials in the 350–50,000 cm−1 Spectral Region,” Final Report, Contract DAAG-29-79-CO131, U.S. Army Research Office, Research Triangle Park, NC (1983).

Rasool, I. S.

I. S. Rasool, S. H. Schneider, “Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate,” Science 173, 138–141 (1981).
[CrossRef]

Richardson, N. M.

Rivera, R.

Roessler, D. M.

D. M. Roessler, F. R. Faxvog, “Optoacoustical Measurement of Optical Absorption in Acetylene Smoke,” J. Opt. Soc. Am. 69, 1699–1704 (1979).
[CrossRef]

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon Variation with Air/Fuel Ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 57.

Rothman, L. S.

Rubini, F.

A. Borghesi, E. Bussoletti, L. Colangeli, A. Minafra, F. Rubini, “The Absorption Efficiency of Submicron Amorphous Carbon Particles Between 2.5 and 40 μm,” Infrared Phys. 23, 85–92 (1983).
[CrossRef]

Samson, R. J.

G. W. Mulholland, R. J. Samson, R. D. Mountain, M. H. Ernst, “Cluster Size Distribution for Free Molecular Agglomeration,” Energy and Fuels 2, 481–486 (1988).
[CrossRef]

Sarofim, A. F.

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Schneider, S. H.

I. S. Rasool, S. H. Schneider, “Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate,” Science 173, 138–141 (1981).
[CrossRef]

Smith, G. W.

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon Variation with Air/Fuel Ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 57.

Stevenson, R.

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon Variation with Air/Fuel Ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 57.

Szymanski, H. A.

H. A. Szymanski, IR-Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964), Chap. 5.

Tanaka, M.

G. Yamamoto, M. Tanaka, “Increase of Global Albedo Due to Air Pollution,” J. Atmos. Sci. 29, 1405–1412 (1972).
[CrossRef]

Timofeyev, Y. M.

Y. M. Timofeyev, S. P. Obraztsov, “Influence of Aerosols in Shaping the Outgoing Thermal Radiation,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 820–826 (1984).

Tomasselli, V. P.

Toon, O. B.

J. B. Pollack, O. B. Toon, D. Weidman, “Radiative Properties of the Background Stratospheric Aerosols and Implications for Perturbed Conditions,” Geophys. Res. Lett. 8, 26–34 (1981).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), p. 70.

Viskanta, R.

R. W. Bergstrom, R. Viskanta, “Modeling of the Effects of Gaseous and Particulate Pollutants in the Urban Atmosphere. Part 1: Thermal Structure,” J. Appl. Meteorol. 12, 901–912 (1973).
[CrossRef]

Waterman, P. C.

N. E. Pedersen, J. C. Pederson, P. C. Waterman, “Absorption and Scattering by Conductive Fibers: Basic Theory and Comparison with Asymptotic Results,” Annual Report, Contract F49620-84-C-0045, Air Force Office of Scientific Research, Bolling AFB, DC (1985).

Weidman, D.

J. B. Pollack, O. B. Toon, D. Weidman, “Radiative Properties of the Background Stratospheric Aerosols and Implications for Perturbed Conditions,” Geophys. Res. Lett. 8, 26–34 (1981).
[CrossRef]

Williams, G. C.

W. D. Erickson, G. C. Williams, H. C. Hottel, “Light Scattering Measurements as seen in a Benzene-Air Flame,” Combust. Flame 8, 127–132 (1964).
[CrossRef]

Williams, M. W.

M. W. Williams, E. T. Arakawa, “Optical Properties of Glassy Carbon from 0 to 82 eV,” J. Appl. Phys. 43, 3460–3463 (1972).
[CrossRef]

Yamamoto, G.

G. Yamamoto, M. Tanaka, “Increase of Global Albedo Due to Air Pollution,” J. Atmos. Sci. 29, 1405–1412 (1972).
[CrossRef]

Yurevich, F. B.

J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116–138 (1983).
[CrossRef]

Appl. Opt. (5)

Carbon (1)

P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719–729 (1968).
[CrossRef]

Combust. Flame (2)

W. D. Erickson, G. C. Williams, H. C. Hottel, “Light Scattering Measurements as seen in a Benzene-Air Flame,” Combust. Flame 8, 127–132 (1964).
[CrossRef]

S. Chippett, W. A. Gray, “The Size and Optical Properties of Soot Particles,” Combust. Flame 31, 149–159 (1978).
[CrossRef]

Combust. Sci. Technol. (1)

J. D. Felske, T. T. Charalampopoulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivity of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263–283 (1984).
[CrossRef]

Energy and Fuels (1)

G. W. Mulholland, R. J. Samson, R. D. Mountain, M. H. Ernst, “Cluster Size Distribution for Free Molecular Agglomeration,” Energy and Fuels 2, 481–486 (1988).
[CrossRef]

Geophys. Res. Lett. (1)

J. B. Pollack, O. B. Toon, D. Weidman, “Radiative Properties of the Background Stratospheric Aerosols and Implications for Perturbed Conditions,” Geophys. Res. Lett. 8, 26–34 (1981).
[CrossRef]

Infrared Phys. (1)

A. Borghesi, E. Bussoletti, L. Colangeli, A. Minafra, F. Rubini, “The Absorption Efficiency of Submicron Amorphous Carbon Particles Between 2.5 and 40 μm,” Infrared Phys. 23, 85–92 (1983).
[CrossRef]

Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. (4)

K. Y. Kondratyev, M. A. Prokofyev, “Atmospheric Aerosol and Its Climatic Effects,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 902–908 (1984).

Y. M. Timofeyev, S. P. Obraztsov, “Influence of Aerosols in Shaping the Outgoing Thermal Radiation,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 820–826 (1984).

A. P. Chavkovskiy, “Statistical Analysis of Optical Characteristics of the Tropospheric Aerosol Under Desert Conditions,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 648–653 (1984).

L. B. Gabelko, Y. S. Lyubovtseva, “IR Absorption Index of the Atmospheric Aerosol,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 640–647 (1984).

J. Appl. Meteorol. (1)

R. W. Bergstrom, R. Viskanta, “Modeling of the Effects of Gaseous and Particulate Pollutants in the Urban Atmosphere. Part 1: Thermal Structure,” J. Appl. Meteorol. 12, 901–912 (1973).
[CrossRef]

J. Appl. Phys. (2)

M. W. Williams, E. T. Arakawa, “Optical Properties of Glassy Carbon from 0 to 82 eV,” J. Appl. Phys. 43, 3460–3463 (1972).
[CrossRef]

A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves From Two Concentric Spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

J. Atmos. Sci. (2)

G. Yamamoto, M. Tanaka, “Increase of Global Albedo Due to Air Pollution,” J. Atmos. Sci. 29, 1405–1412 (1972).
[CrossRef]

J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116–138 (1983).
[CrossRef]

J. Heat Transfer (1)

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. A: Math. Nucl. Gen. (2)

M. V. Berry, “Diffractals,” J. Phys. A: Math. Nucl. Gen. 12, 781–797 (1979).
[CrossRef]

M. E. Cates, “Homogeneity and Spectral Dimension of Aggregation Fractals,” J. Phys. A: Math. Nucl. Gen. 17, L487–L489 (1984).
[CrossRef]

J. Phys. Paris (1)

R. Jullien, M. Kolb, R. Botet, “Diffusion Limited Aggregation with Directed and Anisotropic Diffusion,” J. Phys. Paris 45, 395–399 (1984).

Opt. Lett. (1)

Phys. Rev. Lett. (1)

H. G. E. Hentschel, “Fractal Dimension of Generalized Diffusion-Limited Aggregates,” Phys. Rev. Lett. 52, 212–215 (1984).
[CrossRef]

Science (1)

I. S. Rasool, S. H. Schneider, “Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate,” Science 173, 138–141 (1981).
[CrossRef]

Other (11)

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon Variation with Air/Fuel Ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 57.

H. A. Szymanski, IR-Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964), Chap. 5.

C. W. Bruce, R. E. Lee, “Millimeter Wavelength Absorption by Chlorodifluoromethane,” Technical Report, U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM 88002 (1987).

J. J. Gallagher, D. P. Campbell, “Quantitative Absorption Measurements of Freon 22 at 94 GHz,” Final Technical Report, GIT Project No. A-4106, Georgia Institute of Technology, Atlanta, GA (1986).

N. E. Pedersen, J. C. Pederson, P. C. Waterman, “Absorption and Scattering by Conductive Fibers: Basic Theory and Comparison with Asymptotic Results,” Annual Report, Contract F49620-84-C-0045, Air Force Office of Scientific Research, Bolling AFB, DC (1985).

M. R. Querry, “Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet,” Technical Report No. CROEC-CR-88009, Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD (1987).

P. Delhaes, F. Carmona, “Physical Properties of Noncrystalline Carbons,” in Chemistry and Physics of Carbon, Vol. 17, P. L. Walker, P. A. Thrower, Eds. (Marcel Dekker, Inc, New York, 1981) p. 89–124.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), p. 70.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 141.

O. Edoh, “The Optical Properties of Carbon,” Ph.D. Dissertation, U. Arizona/Tucson (1987).

M. R. Querry, “Optical Properties of Natural Minerals and Other Materials in the 350–50,000 cm−1 Spectral Region,” Final Report, Contract DAAG-29-79-CO131, U.S. Army Research Office, Research Triangle Park, NC (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic diagram of the measurement apparatus for determination of absorption and scattering at λ = 4880 Å.

Fig. 2
Fig. 2

Absorption and extinction coefficients at λ = 4880 Å as functions of aerosol density.

Fig. 3
Fig. 3

Soot particles. The scale size on the label (15 μm) is indicated by the total length of the dashed section.

Fig. 4
Fig. 4

Schematic of the system used for measurements at λ = 1.06 μm.

Fig. 5
Fig. 5

Attenuation coefficients at λ = 1.06 μm as functions of aerosol density.

Fig. 6
Fig. 6

Attenuation coefficients as functions of aerosol mass density for λ = 3.39 μm. The different symbols represent independent data sets.

Fig. 7
Fig. 7

Results of soot sizing using a single particle light scattering particle spectrometer calibrated for use with spherical particles. Particle radius values (given in microns) are only indicators of relative size. The discontinuity at ~0.6 μm coincides with a change in instrumental size range.

Fig. 8
Fig. 8

Transmission cell used for submillimeter wavelength measurements.

Fig. 9
Fig. 9

Schematic of the complete optical system for submillimeter wavelength (SMMW) measurements.

Fig. 10
Fig. 10

Absorption coefficient at λ = 0.319 cm as function of aerosol mass density. The different symbols represent independent data sets.

Fig. 11
Fig. 11

Details of the carbonaceous aerosol of this study.

Fig. 12
Fig. 12

Spherical carbon particles (D = 0.06 μm) dispersed using compressed dry air through a spiral brass brush (lengthwise).

Fig. 13
Fig. 13

Complex indices for soot to 55 μm and glassy carbon to 1 mm.

Fig. 14
Fig. 14

Approximation of soot particle form distribution in terms of particle major dimension.

Fig. 15
Fig. 15

Attenuation coefficients as functions of wavelength from 0.5 μm to 1 cm. Inverse wavelength dependence (relative), dashed line; ellipsoidal theory (for small particles) applied to feature selective approximation of the soot distribution. Distribution of semimajor axis values is from Fig. 14. Three values of semiminor axes (b) about the mean values are used.

Fig. 16
Fig. 16

Theory for spheres and extended cylinders with measured soot values. The radius cylinders and sphere are 0.05 μm.

Fig. 17
Fig. 17

Wavelength dependencies of the scattered proportion of the attenuation (uncoated sphere) (Ө) and the ratio of total scattering for a sphere with LHC coating to an uncoated sphere of the same net radius (Δ).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α = 4 . 55 ± 0 . 26 m 2 / g , ε = 6 . 97 ± 0 . 31 m 2 / g ,
ε = 3 . 59 ± 0 . 16 m 2 / g .
α = 0 . 85 ± 0 . 10 m 2 / q , ε = 1 . 26 ± 0 . 15 m 2 / g .
α = 0 . 84 ± 0 . 076 m 2 / g , ε = 0 . 99 ± 0 . 12 m 2 / g ,
α = 5 . 16 × 10 3 ± 5 . 5 × 10 4 ( m 2 / g ) .
α = 6 . 1 × 10 3 ± 4 × 10 4 ( m 2 / g ) .

Metrics