Abstract

Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evaluate the temperature sensitivity of differential absorption lidar (DIAL) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717–733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E″, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for sixty-seven H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E″ values in the 100–300-cm−1 range were found to be optimum for DIAL measurements of H2O number densities, while E″ values in the 250–500-cm−1 range were found to be optimum for H2O mixing ratio measurements.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by Means of a Ground Based Optical Radar,” in Proceedings, Fourth Symposium on Remote Sensing of the Environment, 12–14 Apr. 1966 (Environmental Research Institute of Michigan, Ann Arbor, 1966), pp. 273–283.
  2. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
    [CrossRef] [PubMed]
  3. C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
    [CrossRef]
  4. V. V. Zuev, V. E. Zuev, Y. S. Makushkin, V. N. Marichev, A. A. Mitsel, “Laser Sounding of Atmospheric Humidity: Experiment,” Appl. Opt. 22, 3742–3746 (1983).
    [CrossRef] [PubMed]
  5. E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements Over the Gulf Stream,” in Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984), pp. 151–155.
  6. S. Ismail, E. V. Browell, “Airborne and Spaceborne Lidar Measurements of Water Vapor Profiles: A Sensitivity Analysis,” Appl. Opt. 28, 3603–3615 (1989).
    [CrossRef] [PubMed]
  7. H. L. Heaton, “Temperature Scaling of Absorption Coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976).
    [CrossRef]
  8. T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
    [CrossRef]
  9. S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
    [CrossRef]
  10. B. Grossmann, E. V. Browell, “Spectroscopy of Water Vapor in the 720-nm Wavelength Region: Line Strength, Self-Induced Pressure Broadenings and Shifts, and Temperature Dependence of Linewidths and Shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
    [CrossRef]
  11. B. E. Grossmann, E. V. Browell, “Water Vapor Line Broadening and Shifting by Air, Nitrogen, Oxygen, and Argon in the 720-nm Wavelength Region,” J. Mol. Spectrosc. 138, 562–595 (1989).
    [CrossRef]
  12. W. S. Benedict, L. D. Kaplan, “Calculation of Linewidths in H2O-N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).
  13. R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1976), pp. 71–151.
    [CrossRef]
  14. J. Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, J. W. Brault, J. Mol. Spectrosc. 116, 167–190 (1986).
    [CrossRef]
  15. R. A. McClatchey et al., “Optical Properties of the Atmosphere,” AFCRL-72-0497 (Air Force Geophysics Laboratory, Hanscom AFB, MA, 1972).

1989 (3)

S. Ismail, E. V. Browell, “Airborne and Spaceborne Lidar Measurements of Water Vapor Profiles: A Sensitivity Analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

B. Grossmann, E. V. Browell, “Spectroscopy of Water Vapor in the 720-nm Wavelength Region: Line Strength, Self-Induced Pressure Broadenings and Shifts, and Temperature Dependence of Linewidths and Shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Water Vapor Line Broadening and Shifting by Air, Nitrogen, Oxygen, and Argon in the 720-nm Wavelength Region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

1986 (1)

J. Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, J. W. Brault, J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

1983 (1)

1982 (1)

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

1979 (2)

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

1976 (2)

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

H. L. Heaton, “Temperature Scaling of Absorption Coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976).
[CrossRef]

1959 (1)

W. S. Benedict, L. D. Kaplan, “Calculation of Linewidths in H2O-N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).

Benedict, W. S.

W. S. Benedict, L. D. Kaplan, “Calculation of Linewidths in H2O-N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).

Brault, J. W.

J. Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, J. W. Brault, J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

Browell, E. V.

B. E. Grossmann, E. V. Browell, “Water Vapor Line Broadening and Shifting by Air, Nitrogen, Oxygen, and Argon in the 720-nm Wavelength Region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Spectroscopy of Water Vapor in the 720-nm Wavelength Region: Line Strength, Self-Induced Pressure Broadenings and Shifts, and Temperature Dependence of Linewidths and Shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

S. Ismail, E. V. Browell, “Airborne and Spaceborne Lidar Measurements of Water Vapor Profiles: A Sensitivity Analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements Over the Gulf Stream,” in Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984), pp. 151–155.

Cahen, C.

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

Camy-Peyret, C.

J. Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, J. W. Brault, J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

Chevillard, J.-P.

J. Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, J. W. Brault, J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1976), pp. 71–151.
[CrossRef]

Drayson, S. R.

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

Flamant, P.

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

Flaud, J.-M.

J. Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, J. W. Brault, J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

Gentry, B.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

Giver, L. P.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

Goroch, A. K.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements Over the Gulf Stream,” in Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984), pp. 151–155.

Grossmann, B.

B. Grossmann, E. V. Browell, “Spectroscopy of Water Vapor in the 720-nm Wavelength Region: Line Strength, Self-Induced Pressure Broadenings and Shifts, and Temperature Dependence of Linewidths and Shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

Grossmann, B. E.

B. E. Grossmann, E. V. Browell, “Water Vapor Line Broadening and Shifting by Air, Nitrogen, Oxygen, and Argon in the 720-nm Wavelength Region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

Heaton, H. L.

H. L. Heaton, “Temperature Scaling of Absorption Coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976).
[CrossRef]

Ismail, S.

S. Ismail, E. V. Browell, “Airborne and Spaceborne Lidar Measurements of Water Vapor Profiles: A Sensitivity Analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements Over the Gulf Stream,” in Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984), pp. 151–155.

Kaplan, L. D.

W. S. Benedict, L. D. Kaplan, “Calculation of Linewidths in H2O-N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).

Makushkin, Y. S.

Mandin, J. Y.

J. Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, J. W. Brault, J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

Marichev, V. N.

Markson, R.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements Over the Gulf Stream,” in Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984), pp. 151–155.

McClatchey, R. A.

R. A. McClatchey et al., “Optical Properties of the Atmosphere,” AFCRL-72-0497 (Air Force Geophysics Laboratory, Hanscom AFB, MA, 1972).

McIlrath, T. J.

Megie, G.

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

Mitsel, A. A.

Russell, P. B.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1976), pp. 71–151.
[CrossRef]

Schotland, R. M.

R. M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by Means of a Ground Based Optical Radar,” in Proceedings, Fourth Symposium on Remote Sensing of the Environment, 12–14 Apr. 1966 (Environmental Research Institute of Michigan, Ann Arbor, 1966), pp. 273–283.

Schwemmer, G.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

Wilkerson, T. D.

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements Over the Gulf Stream,” in Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984), pp. 151–155.

Zuev, V. E.

Zuev, V. V.

Appl. Opt. (3)

J. Appl. Meteorol. (1)

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

J. Chem. Phys. (1)

W. S. Benedict, L. D. Kaplan, “Calculation of Linewidths in H2O-N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).

J. Mol. Spectrosc. (3)

B. Grossmann, E. V. Browell, “Spectroscopy of Water Vapor in the 720-nm Wavelength Region: Line Strength, Self-Induced Pressure Broadenings and Shifts, and Temperature Dependence of Linewidths and Shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Water Vapor Line Broadening and Shifting by Air, Nitrogen, Oxygen, and Argon in the 720-nm Wavelength Region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

J. Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, J. W. Brault, J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

H. L. Heaton, “Temperature Scaling of Absorption Coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976).
[CrossRef]

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

Other (4)

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements Over the Gulf Stream,” in Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984), pp. 151–155.

R. A. McClatchey et al., “Optical Properties of the Atmosphere,” AFCRL-72-0497 (Air Force Geophysics Laboratory, Hanscom AFB, MA, 1972).

R. M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by Means of a Ground Based Optical Radar,” in Proceedings, Fourth Symposium on Remote Sensing of the Environment, 12–14 Apr. 1966 (Environmental Research Institute of Michigan, Ann Arbor, 1966), pp. 273–283.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1976), pp. 71–151.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Systematic dependence of the linewidth temperature dependence exponent α on linewidth γL for the υ′ = 301 band of H2O. The straight line is a linear least-squares fit to the data points.

Fig. 2
Fig. 2

Systematic dependence of α on ground state energy E″. The straight line is a linear least-squares fit to the data points.

Fig. 3
Fig. 3

Systematic dependence of linewidth γL on E″. The straight line is a linear least-squares fit to the data points.

Fig. 4
Fig. 4

Temperature sensitivity of DIAL number density measurement errors at 1-atm pressure for a range of E″ values.

Fig. 5
Fig. 5

Temperature sensitivity of DIAL number density measurement errors at atmospheric pressure levels of (a) 1 atm, (b) 0.5 atm, and (c) 0.25 atm.

Fig. 6
Fig. 6

Temperature sensitivity of DIAL mixing ratio measurement errors at atmospheric pressure levels of (a) 1 atm, (b) 0.5 atm, and (c) 0.25 atm.

Tables (2)

Tables Icon

Table I Water Vapor Absorption Line Parameters in the 720-nm Band: Vacuum Wavenumbers (v), Air Wavelengths (λ), E″ Values, Linewidths (γL), Temperature Exponents (α), and Center Cross Section (σ0) Values at P = 1 atm and T = 296 K

Tables Icon

Table II Temperature Neutral Points (TN) and Lower (TL) and Upper (TU) Limits of Temperature Insensitive Regions* for DIAL Water Vapor Concentration and Mixing Ratio Measurements

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S ( T ) = S 0 ( T 0 T ) 3 / 2 { 1 exp [ h c ν 0 / ( k T ) ] 1 exp [ h c ν 0 / ( k T 0 ) ] } exp 1 . 439 [ 1 T 0 1 T ] E ,
γ L = γ 0 ( P P 0 ) ( T 0 T ) α ,
σ 0 = S π γ L ,
σ 0 = B ( T 0 / T ) ( 1 . 5 α ) exp ( A E / T ) ,
T N = A E ( 1 . 5 α ) .
T N = A E ( 2 . 5 α ) .
σ ( ν ) = S γ D ( ln 2 π ) 1 / 2 exp [ ln 2 ( ν ν 0 ) 2 γ D 2 ] ,
σ 0 = S γ D ( ln 2 π ) 1 / 2 ,
σ 0 = C ( 1 T 2 ) exp ( A E T ) ,
T N = A E 2 .
V ( x , y ) = σ ( x , y ) K = y π exp ( t 2 ) y 2 + ( x t 2 ) d t ,
1 σ 0 d σ 0 d T 1 T T × σ 0 ( T ) σ 0 ( T ) [ σ 0 ( T ) + σ 0 ( T ) ] 2

Metrics