Abstract

A high resolution Bessel function profile diffraction-free beam has been reproduced from a holographic optical element made by direct physical interference.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Durnin, “Exact Solutions for Nondiffracting Beams. I. The Scalar Theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [CrossRef]
  2. F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss Beams,” Opt. Commun. 64, 491–495 (1987).
    [CrossRef]
  3. J. Durnin, J. J. Miceli, J. H. Eberly, “Comparison of Bessel and Gaussian Beams,” Opt. Lett. 13, 79–80 (1988).
    [CrossRef] [PubMed]
  4. G. Indebetouw, “Nondiffracting Optical Fields: Some Remarks on Their Analysis and Synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).
    [CrossRef]
  5. J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-Free Beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef] [PubMed]
  6. J. Turunen, A. Vasara, A. T. Friberg, “Holographic Generation of Diffraction-Free Beams,” Appl. Opt. 27, 3959–3962 (1988).
    [CrossRef] [PubMed]
  7. A. Vasara, J. Turunen, A. T. Friberg, “Realization of General Nondiffracting Beams with Computer-Generated Holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
    [CrossRef] [PubMed]
  8. J. K. Jabczynski, “A ‘Diffraction-Free’ Resonator,” Opt. Commun. 77, 292–294 (1990).
    [CrossRef]

1990

J. K. Jabczynski, “A ‘Diffraction-Free’ Resonator,” Opt. Commun. 77, 292–294 (1990).
[CrossRef]

1989

1988

1987

J. E. Durnin, “Exact Solutions for Nondiffracting Beams. I. The Scalar Theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss Beams,” Opt. Commun. 64, 491–495 (1987).
[CrossRef]

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-Free Beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Durnin, J.

J. Durnin, J. J. Miceli, J. H. Eberly, “Comparison of Bessel and Gaussian Beams,” Opt. Lett. 13, 79–80 (1988).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-Free Beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Durnin, J. E.

Eberly, J. H.

J. Durnin, J. J. Miceli, J. H. Eberly, “Comparison of Bessel and Gaussian Beams,” Opt. Lett. 13, 79–80 (1988).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-Free Beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Friberg, A. T.

Gori, F.

F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss Beams,” Opt. Commun. 64, 491–495 (1987).
[CrossRef]

Guattari, G.

F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss Beams,” Opt. Commun. 64, 491–495 (1987).
[CrossRef]

Indebetouw, G.

Jabczynski, J. K.

J. K. Jabczynski, “A ‘Diffraction-Free’ Resonator,” Opt. Commun. 77, 292–294 (1990).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, J. H. Eberly, “Comparison of Bessel and Gaussian Beams,” Opt. Lett. 13, 79–80 (1988).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-Free Beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Padovani, C.

F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss Beams,” Opt. Commun. 64, 491–495 (1987).
[CrossRef]

Turunen, J.

Vasara, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of experimental apparatus: ES, electronic shutter; BS, beam splitter; F, attenuating filters; SF, spatial filter; S, annular slit; RB, Gaussian reference beam; OB, Bessel object beam; HOE, holographic optical element; BB, Bessel beam.

Fig. 2
Fig. 2

Intensity of the Bessel object beam vs ρ at (a) z = 40 cm, (b) z = 60 cm, and (c) z = 80 cm.

Fig. 3
Fig. 3

Intensity of the holographically reproduced Bessel beam vs ρ at (a) z = 40 cm, (b) z = 60 cm, and (c) z = 80 cm.

Fig. 4
Fig. 4

Axial peak intensity vs z of the original Bessel object beam and the holographically reproduced Bessel beam.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( r , t ) = E 0 exp [ i ( β z ω t ) ] J 0 ( α ρ ) ,

Metrics