Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Fried, “Least-Square Fitting a Wave-Front Distortion Estimate to an Array of Phase-Difference Measurements,” J. Opt. Soc. Am. 67, 370–375 (1977).
    [CrossRef]
  2. R. H. Hudgin, “Wave-Front Reconstruction for Compensated Imaging,” J. Opt. Soc. Am. 67, 375–378 (1977).
    [CrossRef]
  3. R. J. Noll, “Phase Estimates from Slope-Type Wave-Front Sensors,” J. Opt. Soc. Am. 68, 139–140 (1978).
    [CrossRef]
  4. W. H. Southwell, “Wave-Front Estimation from Wave-Front Slope Measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980).
    [CrossRef]
  5. R. L. Frost, C. K. Rushforth, B. S. Baxter, “Fast FFT-Based Algorithm for Phase Estimation in Speckle Imaging,” Appl. Opt. 18, 2056–2061 (1979).
    [CrossRef] [PubMed]
  6. K. R. Freischald, C. Koliopoulos, “Modal Estimation of a Wave Front from Difference Measurements Using the Discrete Fourier Transform,” J. Opt. Soc. Am. A 3, 1852–1861 (1986).
    [CrossRef]
  7. R. W. Gershberg, “Super-Resolution Through Error Energy Reduction,” Opt. Acta 21, 709–720 (1974).
    [CrossRef]
  8. L. M. Kani, J. C. Dainty, “Super-Resolution Using the Gershberg Algorithm,” Opt. Commun. 68, 11–17 (1988).
    [CrossRef]
  9. F. Roddier, “Curvature Sensing and Compensation: A New Concept in Adaptive Optics,” Appl. Opt. 27, 1223–1225 (1988).
    [CrossRef] [PubMed]
  10. F. Roddier, C. Roddier, N. Roddier, “Curvature Sensing: A New Wavefront Sensing Method,” Proc. Soc. Photo-Opt. Instrum. Eng. 976, 203–209 (1988).

1988 (3)

L. M. Kani, J. C. Dainty, “Super-Resolution Using the Gershberg Algorithm,” Opt. Commun. 68, 11–17 (1988).
[CrossRef]

F. Roddier, C. Roddier, N. Roddier, “Curvature Sensing: A New Wavefront Sensing Method,” Proc. Soc. Photo-Opt. Instrum. Eng. 976, 203–209 (1988).

F. Roddier, “Curvature Sensing and Compensation: A New Concept in Adaptive Optics,” Appl. Opt. 27, 1223–1225 (1988).
[CrossRef] [PubMed]

1986 (1)

1980 (1)

1979 (1)

1978 (1)

1977 (2)

1974 (1)

R. W. Gershberg, “Super-Resolution Through Error Energy Reduction,” Opt. Acta 21, 709–720 (1974).
[CrossRef]

Baxter, B. S.

Dainty, J. C.

L. M. Kani, J. C. Dainty, “Super-Resolution Using the Gershberg Algorithm,” Opt. Commun. 68, 11–17 (1988).
[CrossRef]

Freischald, K. R.

Fried, D. L.

Frost, R. L.

Gershberg, R. W.

R. W. Gershberg, “Super-Resolution Through Error Energy Reduction,” Opt. Acta 21, 709–720 (1974).
[CrossRef]

Hudgin, R. H.

Kani, L. M.

L. M. Kani, J. C. Dainty, “Super-Resolution Using the Gershberg Algorithm,” Opt. Commun. 68, 11–17 (1988).
[CrossRef]

Koliopoulos, C.

Noll, R. J.

Roddier, C.

F. Roddier, C. Roddier, N. Roddier, “Curvature Sensing: A New Wavefront Sensing Method,” Proc. Soc. Photo-Opt. Instrum. Eng. 976, 203–209 (1988).

Roddier, F.

F. Roddier, C. Roddier, N. Roddier, “Curvature Sensing: A New Wavefront Sensing Method,” Proc. Soc. Photo-Opt. Instrum. Eng. 976, 203–209 (1988).

F. Roddier, “Curvature Sensing and Compensation: A New Concept in Adaptive Optics,” Appl. Opt. 27, 1223–1225 (1988).
[CrossRef] [PubMed]

Roddier, N.

F. Roddier, C. Roddier, N. Roddier, “Curvature Sensing: A New Wavefront Sensing Method,” Proc. Soc. Photo-Opt. Instrum. Eng. 976, 203–209 (1988).

Rushforth, C. K.

Southwell, W. H.

Appl. Opt. (2)

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (1)

Opt. Acta (1)

R. W. Gershberg, “Super-Resolution Through Error Energy Reduction,” Opt. Acta 21, 709–720 (1974).
[CrossRef]

Opt. Commun. (1)

L. M. Kani, J. C. Dainty, “Super-Resolution Using the Gershberg Algorithm,” Opt. Commun. 68, 11–17 (1988).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

F. Roddier, C. Roddier, N. Roddier, “Curvature Sensing: A New Wavefront Sensing Method,” Proc. Soc. Photo-Opt. Instrum. Eng. 976, 203–209 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Flow chart of the iterative Fourier transform algorithm used to reconstruct a wavefront W from the measured wavefront slopes ∂W/∂x and ∂W/∂y.

Fig. 2
Fig. 2

Example of wavefront reconstructions from wavefront slopes. Full line, original wavefront; dashed line, reconstructed wavefront using the SOR algorithm. Dash/dot line, reconstructed wavefront using iterative Fourier transforms.

Fig. 3
Fig. 3

Flow chart of an iterative Fourier transform algorithm used to reconstruct a wavefront W from the wavefront Laplacian measured from out of focus images.10

Metrics