Abstract

Conical diffraction grating mounts (gratings used off-plane) offer many new possibilities in the ultraviolet and extreme ultraviolet wavelength domain. Up to now, single conical diffraction gratings, whether coupled or not to grazing incidence gratings, have had limited spectral resolution and disadvantages owing to the simultaneous monochromatic slit image rotation with the grating rotation during the wavelength scan. Here we propose a tandem conical diffraction mount that improves the spectral resolution and nearly eliminates the monochromatic slit image rotation. This results in the improvement of spectral image quality. Through the example of a complete solar telescope–spectrometer instrumentation, the qualities (spectral and angular resolution—2 pm and 1 sec of arc) and limits (lower efficiency) of the mounting are compared to other recent solar instrumentations proposed in the 30–135-nm wavelength range.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Rense, “Techniques for Rocket Solar UV and for UV Spectroscopy,” Space Sci. Rev. 5, 234–264 (1966).
    [CrossRef]
  2. W. Werner, “The Geometric Optical Aberration Theory of Diffraction Gratings,” Appl. Opt. 6, 1691–1699 (1967).
    [CrossRef] [PubMed]
  3. C. H. F. Velzel, “A General Theory of the Aberrations of Diffraction Gratings and Gratinglike Optical Instruments,” J. Opt. Soc. Am. 66, 346–353 (1976).
    [CrossRef]
  4. D. J. Schroeder, “Design Considerations for Astronomical Echelle Spectrographs,” Publ. Astron. Soc. Pac. 82, 1253–1275 (1970).
    [CrossRef]
  5. D. J. Schroeder, R. L. Hilliard, “Echelle Efficiencies: Theory and Experiment,” Appl. Opt. 19, 2833–2841 (1980).
    [CrossRef] [PubMed]
  6. J. Dahlbacka, P. Lindblom, A. Danielsson, “Focusing Conditions for Gratings with Two Planes of Symmetry,” Optik Stuttgart 43, 213–223 (1975).
  7. M. A. Gil, J. M. Simon, “Diffraction Grating and Optical Aberrations: A New and Exact Formulation,” Appl. Opt. 24, 2956–2958 (1985).
    [CrossRef] [PubMed]
  8. M. Koike, K. Ohkubo, “Holographic Concave Gratings for Use with an Off-Plane Constant-Deviation Monochromator,” Appl. Opt. 25, 4071–4075 (1986).
    [CrossRef] [PubMed]
  9. W. Werner, “X-Ray Efficiencies of Blazed Gratings in Extreme Off-Plane Mountings,” Appl. Opt. 16, 2078–2080 (1977).
    [CrossRef] [PubMed]
  10. D. Maystre, R. Petit, “Sur la diffraction d’une onde plane par un reseau infiniment conducteur,” Opt. Commun 4, 97–101 (1971).
    [CrossRef]
  11. M. Neviere, M. Cadilhac, “Sur la diffraction d’une onde electromagnetique plane par un reseau infiniment conducteur, lorsque le vecteur d’onde incident n’est pas orthogonal aux sillons,” Opt. Commun 4, 13–18 (1971).
    [CrossRef]
  12. L. Mashev, E. Popov, “Reflection Grating in Conical Diffraction Mountings,” J. Opt. Paris 18, 3–8 (1987).
    [CrossRef]
  13. E. Popov, L. Mashev, “Conical Diffraction Mountings. Generalisation of a Rigourous Differential Method,” J. Opt. Paris 17, 175–180 (1986).
    [CrossRef]
  14. M. Neviere, D. Maystre, W. R. Hunter, “On the Use of Classical and Conical Diffraction Mountings for XUV Gratings,” J. Opt. Soc. Am. 68, 1106–1113 (1978).
    [CrossRef]
  15. M. Neviere, P. Vincent, D. Maystre, “X-Ray Efficiencies of Gratings,” Appl. Opt. 17, 843–845 (1978).
    [CrossRef] [PubMed]
  16. W. Cash, R. Kohnert, “Very High X-Ray Efficiency from a Blazed Grating,” Appl. Opt. 21, 17–18 (1982).
    [CrossRef] [PubMed]
  17. W. Werner, H. Visser, “X-Ray Monochromator Designs Based on Extreme Off-Plane Grating Mountings,” Appl. Opt. 20, 487–492 (1981).
    [CrossRef] [PubMed]
  18. D. Maystre, M. Neviere, R. Petit, “Experimental Verifications and Application of the Theory,” in Electromagnetic Theory of Gratings, R. Petit, Ed. (Springer-Verlag, New York, 1980), p. 159.
    [CrossRef]
  19. P. Lindblom, B. Sandberg, “New Eagle-Type Monochromator Mounting with Ruled Diffraction Grating at 45° Off-Plane,” Appl. Opt. 19, 1941–1945 (1980).
    [CrossRef] [PubMed]
  20. W. Cash, “Echelle Spectrographs at Grazing Incidence,” Appl. Opt. 21, 710–717 (1982).
    [CrossRef] [PubMed]
  21. W. E. McClintock, W. Cash, “Grazing Incidence Optics: New Techniques for High Sensitivity Spectroscopy in the Space Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 321–331 (1982).
  22. M. C. Hettrick, P. Jelinsky, S. Bowyer, R. F. Malina, “Proposed Design Class of Grazing Incidence Echelle Spectrometers: Critical Analysis and Reevaluation,” Appl. Opt. 23, 4058–4066 (1984).
    [CrossRef] [PubMed]
  23. M. C. Hettrick, S. Bowyer, “Variable Line-Space Gratings: New Designs for Use in Grazing Incidence Spectrometers,” Appl. Opt. 22, 3921–3924 (1983).
    [CrossRef] [PubMed]
  24. W. C. Cash, “X-Ray Spectrographs Using Radial Groove Gratings,” Appl. Opt. 22, 3971–3976 (1983).
    [CrossRef] [PubMed]
  25. M. C. Hettrick, “Aberrations of Varied Line-Space Grazing Incidence Gratings in Converging Light Beams,” Appl. Opt. 23, 3221–3235 (1984).
    [CrossRef] [PubMed]
  26. M. C. Hettrick, S. Bowyer, “Grazing Incidence Telescopes: a New Class for X-Ray and EUV Spectroscopy,” Appl. Opt. 23, 3732–3735 (1984).
    [CrossRef] [PubMed]
  27. M. C. Hettrick, “Grazing Incidence Echelle Spectrometers Using Varied Line-Space Gratings,” Appl. Opt. 24, 1251–1255 (1985).
    [CrossRef] [PubMed]
  28. W. Werner, “X-Ray and Extended UV Spectrometer Designs Based on Off-Plane Grating Mountings,” Space Sci. Rev. 29, 455–459 (1981).
    [CrossRef]
  29. W. Werner, H. F. van Beek, “Grazing Incidence Focal Plane Instrument for the Wavelength Range 6.5–175 nm,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 272–278 (1983).
  30. D. J. Schroeder, Astronomical Optics (Academic, London, 1987), p. 261.
  31. D. J. Schroeder, “An Echelle Spectrometer-Spectrograph for Astronomical Use,” Appl. Opt. 6, 1976–1980 (1967).
    [CrossRef] [PubMed]
  32. W. McClintock, “A High-Resolution Echelle Spectrograph Suitable for Astronomical Use at Both Far Ultraviolet and Visible Wavelengths,” Publ. Astron. Soc. Pac. 91, 712–718 (1979).
    [CrossRef]
  33. M. V. Murty, “Theory and Principles of Monochromators, Spectrometers and Spectrographs,” Opt. Eng. 13, 23–39 (1974).
    [CrossRef]
  34. D. Maystre, R. Petit, “Principe d’un spectromètre à réseau à transmission constante,” Opt. Commun. 5, 35–38 (1972).
    [CrossRef]
  35. R. M. Bonnet et al., “The LPSP Instrument on OSO8. II In-Flight Performances and Preliminary Results,” Astrophys. J. 221, 1032–1061 (1978).
    [CrossRef]
  36. M. S. Miller, A. J. Caruso, B. E. Woodgate, A. A. Sterk, “Ultraviolet Spectrometer and Polarimeter for the Solar Maximum Mission,” Appl. Opt. 20, 3805–3814 (1981).
    [CrossRef] [PubMed]
  37. G. E. Brueckner, J.-D. F. Bartoe, J. W. Cook, K. P. Dere, D. G. Socker, “HRTS Results from SPACELAB2,” Adv. Space Res. 6(8), 263–272 (1986).
    [CrossRef]
  38. E. M. Reeves, M. C. E. Huber, J. G. Timothy, “Extreme UV Spectroheliometer on the Apollo Telescope Mount,” Appl. Opt. 16, 837–848 (1977).
    [PubMed]
  39. E. M. Reeves, J. G. Timothy, M. C. E. Huber, G. L. With-broe, “Photometric Calibration of the EUV Spectroheliometer on ATM,” Appl. Opt. 16, 849–857 (1977).
    [PubMed]
  40. M. C. E. Huber, J. G. Timothy, “Optical Design of a Stigmatic Spectroheliometer for Photometric Studies of Dynamic Phenomena at Extreme Ultraviolet Wavelengths,” Space Sci. Instrum. 3, 389–406 (1977).
  41. M. C. E. Huber, G. Tondello, “Stigmatic Performance of an EUV Spectrograph with a Single Toroidal Grating,” Appl. Opt. 18, 3948–3953 (1979).
    [CrossRef] [PubMed]
  42. G. Hass, G. F. Jacobus, W. R. Hunter, “Optical Properties of Evaporated Iridium in the Vacuum Ultraviolet from 500 Å to 2000 Å,” J. Opt. Soc. Am. 57, 758–762 (1967).
    [CrossRef]
  43. S. Mrowska, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160–164 (1985).
  44. P. Lemaire, K. Wilhelm, “8–25 eV High Resolution Solar Spectrometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 1140, 522–527 (1989).
  45. K. Wilhelm et al., “Solar Ultraviolet Measurement of Emitted Radiation-SUMER,” in The SOHO Mission-Scientific and Technical Aspects of the Instruments, ESA SP-1104, 31 (1989).

1989 (1)

P. Lemaire, K. Wilhelm, “8–25 eV High Resolution Solar Spectrometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 1140, 522–527 (1989).

1987 (1)

L. Mashev, E. Popov, “Reflection Grating in Conical Diffraction Mountings,” J. Opt. Paris 18, 3–8 (1987).
[CrossRef]

1986 (3)

E. Popov, L. Mashev, “Conical Diffraction Mountings. Generalisation of a Rigourous Differential Method,” J. Opt. Paris 17, 175–180 (1986).
[CrossRef]

M. Koike, K. Ohkubo, “Holographic Concave Gratings for Use with an Off-Plane Constant-Deviation Monochromator,” Appl. Opt. 25, 4071–4075 (1986).
[CrossRef] [PubMed]

G. E. Brueckner, J.-D. F. Bartoe, J. W. Cook, K. P. Dere, D. G. Socker, “HRTS Results from SPACELAB2,” Adv. Space Res. 6(8), 263–272 (1986).
[CrossRef]

1985 (3)

1984 (3)

1983 (3)

1982 (3)

W. Cash, “Echelle Spectrographs at Grazing Incidence,” Appl. Opt. 21, 710–717 (1982).
[CrossRef] [PubMed]

W. E. McClintock, W. Cash, “Grazing Incidence Optics: New Techniques for High Sensitivity Spectroscopy in the Space Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 321–331 (1982).

W. Cash, R. Kohnert, “Very High X-Ray Efficiency from a Blazed Grating,” Appl. Opt. 21, 17–18 (1982).
[CrossRef] [PubMed]

1981 (3)

1980 (2)

1979 (2)

W. McClintock, “A High-Resolution Echelle Spectrograph Suitable for Astronomical Use at Both Far Ultraviolet and Visible Wavelengths,” Publ. Astron. Soc. Pac. 91, 712–718 (1979).
[CrossRef]

M. C. E. Huber, G. Tondello, “Stigmatic Performance of an EUV Spectrograph with a Single Toroidal Grating,” Appl. Opt. 18, 3948–3953 (1979).
[CrossRef] [PubMed]

1978 (3)

1977 (4)

1976 (1)

1975 (1)

J. Dahlbacka, P. Lindblom, A. Danielsson, “Focusing Conditions for Gratings with Two Planes of Symmetry,” Optik Stuttgart 43, 213–223 (1975).

1974 (1)

M. V. Murty, “Theory and Principles of Monochromators, Spectrometers and Spectrographs,” Opt. Eng. 13, 23–39 (1974).
[CrossRef]

1972 (1)

D. Maystre, R. Petit, “Principe d’un spectromètre à réseau à transmission constante,” Opt. Commun. 5, 35–38 (1972).
[CrossRef]

1971 (2)

D. Maystre, R. Petit, “Sur la diffraction d’une onde plane par un reseau infiniment conducteur,” Opt. Commun 4, 97–101 (1971).
[CrossRef]

M. Neviere, M. Cadilhac, “Sur la diffraction d’une onde electromagnetique plane par un reseau infiniment conducteur, lorsque le vecteur d’onde incident n’est pas orthogonal aux sillons,” Opt. Commun 4, 13–18 (1971).
[CrossRef]

1970 (1)

D. J. Schroeder, “Design Considerations for Astronomical Echelle Spectrographs,” Publ. Astron. Soc. Pac. 82, 1253–1275 (1970).
[CrossRef]

1967 (3)

1966 (1)

W. A. Rense, “Techniques for Rocket Solar UV and for UV Spectroscopy,” Space Sci. Rev. 5, 234–264 (1966).
[CrossRef]

Bartoe, J.-D. F.

G. E. Brueckner, J.-D. F. Bartoe, J. W. Cook, K. P. Dere, D. G. Socker, “HRTS Results from SPACELAB2,” Adv. Space Res. 6(8), 263–272 (1986).
[CrossRef]

Bonnet, R. M.

R. M. Bonnet et al., “The LPSP Instrument on OSO8. II In-Flight Performances and Preliminary Results,” Astrophys. J. 221, 1032–1061 (1978).
[CrossRef]

Bowyer, S.

Brueckner, G. E.

G. E. Brueckner, J.-D. F. Bartoe, J. W. Cook, K. P. Dere, D. G. Socker, “HRTS Results from SPACELAB2,” Adv. Space Res. 6(8), 263–272 (1986).
[CrossRef]

Cadilhac, M.

M. Neviere, M. Cadilhac, “Sur la diffraction d’une onde electromagnetique plane par un reseau infiniment conducteur, lorsque le vecteur d’onde incident n’est pas orthogonal aux sillons,” Opt. Commun 4, 13–18 (1971).
[CrossRef]

Caruso, A. J.

Cash, W.

W. Cash, “Echelle Spectrographs at Grazing Incidence,” Appl. Opt. 21, 710–717 (1982).
[CrossRef] [PubMed]

W. E. McClintock, W. Cash, “Grazing Incidence Optics: New Techniques for High Sensitivity Spectroscopy in the Space Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 321–331 (1982).

W. Cash, R. Kohnert, “Very High X-Ray Efficiency from a Blazed Grating,” Appl. Opt. 21, 17–18 (1982).
[CrossRef] [PubMed]

Cash, W. C.

Choyke, W. J.

S. Mrowska, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160–164 (1985).

Cook, J. W.

G. E. Brueckner, J.-D. F. Bartoe, J. W. Cook, K. P. Dere, D. G. Socker, “HRTS Results from SPACELAB2,” Adv. Space Res. 6(8), 263–272 (1986).
[CrossRef]

Dahlbacka, J.

J. Dahlbacka, P. Lindblom, A. Danielsson, “Focusing Conditions for Gratings with Two Planes of Symmetry,” Optik Stuttgart 43, 213–223 (1975).

Danielsson, A.

J. Dahlbacka, P. Lindblom, A. Danielsson, “Focusing Conditions for Gratings with Two Planes of Symmetry,” Optik Stuttgart 43, 213–223 (1975).

Dere, K. P.

G. E. Brueckner, J.-D. F. Bartoe, J. W. Cook, K. P. Dere, D. G. Socker, “HRTS Results from SPACELAB2,” Adv. Space Res. 6(8), 263–272 (1986).
[CrossRef]

Gil, M. A.

Hass, G.

Hettrick, M. C.

Hilliard, R. L.

Huber, M. C. E.

Hunter, W. R.

Jacobus, G. F.

Jelinsky, P.

S. Mrowska, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160–164 (1985).

M. C. Hettrick, P. Jelinsky, S. Bowyer, R. F. Malina, “Proposed Design Class of Grazing Incidence Echelle Spectrometers: Critical Analysis and Reevaluation,” Appl. Opt. 23, 4058–4066 (1984).
[CrossRef] [PubMed]

Kohnert, R.

Koike, M.

Lemaire, P.

P. Lemaire, K. Wilhelm, “8–25 eV High Resolution Solar Spectrometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 1140, 522–527 (1989).

Lindblom, P.

P. Lindblom, B. Sandberg, “New Eagle-Type Monochromator Mounting with Ruled Diffraction Grating at 45° Off-Plane,” Appl. Opt. 19, 1941–1945 (1980).
[CrossRef] [PubMed]

J. Dahlbacka, P. Lindblom, A. Danielsson, “Focusing Conditions for Gratings with Two Planes of Symmetry,” Optik Stuttgart 43, 213–223 (1975).

Malina, R. F.

Mashev, L.

L. Mashev, E. Popov, “Reflection Grating in Conical Diffraction Mountings,” J. Opt. Paris 18, 3–8 (1987).
[CrossRef]

E. Popov, L. Mashev, “Conical Diffraction Mountings. Generalisation of a Rigourous Differential Method,” J. Opt. Paris 17, 175–180 (1986).
[CrossRef]

Maystre, D.

M. Neviere, D. Maystre, W. R. Hunter, “On the Use of Classical and Conical Diffraction Mountings for XUV Gratings,” J. Opt. Soc. Am. 68, 1106–1113 (1978).
[CrossRef]

M. Neviere, P. Vincent, D. Maystre, “X-Ray Efficiencies of Gratings,” Appl. Opt. 17, 843–845 (1978).
[CrossRef] [PubMed]

D. Maystre, R. Petit, “Principe d’un spectromètre à réseau à transmission constante,” Opt. Commun. 5, 35–38 (1972).
[CrossRef]

D. Maystre, R. Petit, “Sur la diffraction d’une onde plane par un reseau infiniment conducteur,” Opt. Commun 4, 97–101 (1971).
[CrossRef]

D. Maystre, M. Neviere, R. Petit, “Experimental Verifications and Application of the Theory,” in Electromagnetic Theory of Gratings, R. Petit, Ed. (Springer-Verlag, New York, 1980), p. 159.
[CrossRef]

McClintock, W.

W. McClintock, “A High-Resolution Echelle Spectrograph Suitable for Astronomical Use at Both Far Ultraviolet and Visible Wavelengths,” Publ. Astron. Soc. Pac. 91, 712–718 (1979).
[CrossRef]

McClintock, W. E.

W. E. McClintock, W. Cash, “Grazing Incidence Optics: New Techniques for High Sensitivity Spectroscopy in the Space Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 321–331 (1982).

Miller, M. S.

Mrowska, S.

S. Mrowska, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160–164 (1985).

Murty, M. V.

M. V. Murty, “Theory and Principles of Monochromators, Spectrometers and Spectrographs,” Opt. Eng. 13, 23–39 (1974).
[CrossRef]

Neviere, M.

M. Neviere, D. Maystre, W. R. Hunter, “On the Use of Classical and Conical Diffraction Mountings for XUV Gratings,” J. Opt. Soc. Am. 68, 1106–1113 (1978).
[CrossRef]

M. Neviere, P. Vincent, D. Maystre, “X-Ray Efficiencies of Gratings,” Appl. Opt. 17, 843–845 (1978).
[CrossRef] [PubMed]

M. Neviere, M. Cadilhac, “Sur la diffraction d’une onde electromagnetique plane par un reseau infiniment conducteur, lorsque le vecteur d’onde incident n’est pas orthogonal aux sillons,” Opt. Commun 4, 13–18 (1971).
[CrossRef]

D. Maystre, M. Neviere, R. Petit, “Experimental Verifications and Application of the Theory,” in Electromagnetic Theory of Gratings, R. Petit, Ed. (Springer-Verlag, New York, 1980), p. 159.
[CrossRef]

Ohkubo, K.

Petit, R.

D. Maystre, R. Petit, “Principe d’un spectromètre à réseau à transmission constante,” Opt. Commun. 5, 35–38 (1972).
[CrossRef]

D. Maystre, R. Petit, “Sur la diffraction d’une onde plane par un reseau infiniment conducteur,” Opt. Commun 4, 97–101 (1971).
[CrossRef]

D. Maystre, M. Neviere, R. Petit, “Experimental Verifications and Application of the Theory,” in Electromagnetic Theory of Gratings, R. Petit, Ed. (Springer-Verlag, New York, 1980), p. 159.
[CrossRef]

Popov, E.

L. Mashev, E. Popov, “Reflection Grating in Conical Diffraction Mountings,” J. Opt. Paris 18, 3–8 (1987).
[CrossRef]

E. Popov, L. Mashev, “Conical Diffraction Mountings. Generalisation of a Rigourous Differential Method,” J. Opt. Paris 17, 175–180 (1986).
[CrossRef]

Reeves, E. M.

Rense, W. A.

W. A. Rense, “Techniques for Rocket Solar UV and for UV Spectroscopy,” Space Sci. Rev. 5, 234–264 (1966).
[CrossRef]

Sandberg, B.

Sanger, G.

S. Mrowska, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160–164 (1985).

Schroeder, D. J.

D. J. Schroeder, R. L. Hilliard, “Echelle Efficiencies: Theory and Experiment,” Appl. Opt. 19, 2833–2841 (1980).
[CrossRef] [PubMed]

D. J. Schroeder, “Design Considerations for Astronomical Echelle Spectrographs,” Publ. Astron. Soc. Pac. 82, 1253–1275 (1970).
[CrossRef]

D. J. Schroeder, “An Echelle Spectrometer-Spectrograph for Astronomical Use,” Appl. Opt. 6, 1976–1980 (1967).
[CrossRef] [PubMed]

D. J. Schroeder, Astronomical Optics (Academic, London, 1987), p. 261.

Simon, J. M.

Socker, D. G.

G. E. Brueckner, J.-D. F. Bartoe, J. W. Cook, K. P. Dere, D. G. Socker, “HRTS Results from SPACELAB2,” Adv. Space Res. 6(8), 263–272 (1986).
[CrossRef]

Sterk, A. A.

Timothy, J. G.

Tondello, G.

van Beek, H. F.

W. Werner, H. F. van Beek, “Grazing Incidence Focal Plane Instrument for the Wavelength Range 6.5–175 nm,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 272–278 (1983).

Velzel, C. H. F.

Vincent, P.

Visser, H.

Werner, W.

W. Werner, H. F. van Beek, “Grazing Incidence Focal Plane Instrument for the Wavelength Range 6.5–175 nm,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 272–278 (1983).

W. Werner, “X-Ray and Extended UV Spectrometer Designs Based on Off-Plane Grating Mountings,” Space Sci. Rev. 29, 455–459 (1981).
[CrossRef]

W. Werner, H. Visser, “X-Ray Monochromator Designs Based on Extreme Off-Plane Grating Mountings,” Appl. Opt. 20, 487–492 (1981).
[CrossRef] [PubMed]

W. Werner, “X-Ray Efficiencies of Blazed Gratings in Extreme Off-Plane Mountings,” Appl. Opt. 16, 2078–2080 (1977).
[CrossRef] [PubMed]

W. Werner, “The Geometric Optical Aberration Theory of Diffraction Gratings,” Appl. Opt. 6, 1691–1699 (1967).
[CrossRef] [PubMed]

Wilhelm, K.

P. Lemaire, K. Wilhelm, “8–25 eV High Resolution Solar Spectrometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 1140, 522–527 (1989).

K. Wilhelm et al., “Solar Ultraviolet Measurement of Emitted Radiation-SUMER,” in The SOHO Mission-Scientific and Technical Aspects of the Instruments, ESA SP-1104, 31 (1989).

With-broe, G. L.

Woodgate, B. E.

Adv. Space Res. (1)

G. E. Brueckner, J.-D. F. Bartoe, J. W. Cook, K. P. Dere, D. G. Socker, “HRTS Results from SPACELAB2,” Adv. Space Res. 6(8), 263–272 (1986).
[CrossRef]

Appl. Opt. (21)

E. M. Reeves, M. C. E. Huber, J. G. Timothy, “Extreme UV Spectroheliometer on the Apollo Telescope Mount,” Appl. Opt. 16, 837–848 (1977).
[PubMed]

E. M. Reeves, J. G. Timothy, M. C. E. Huber, G. L. With-broe, “Photometric Calibration of the EUV Spectroheliometer on ATM,” Appl. Opt. 16, 849–857 (1977).
[PubMed]

M. C. Hettrick, P. Jelinsky, S. Bowyer, R. F. Malina, “Proposed Design Class of Grazing Incidence Echelle Spectrometers: Critical Analysis and Reevaluation,” Appl. Opt. 23, 4058–4066 (1984).
[CrossRef] [PubMed]

M. C. Hettrick, S. Bowyer, “Variable Line-Space Gratings: New Designs for Use in Grazing Incidence Spectrometers,” Appl. Opt. 22, 3921–3924 (1983).
[CrossRef] [PubMed]

W. C. Cash, “X-Ray Spectrographs Using Radial Groove Gratings,” Appl. Opt. 22, 3971–3976 (1983).
[CrossRef] [PubMed]

M. C. Hettrick, “Aberrations of Varied Line-Space Grazing Incidence Gratings in Converging Light Beams,” Appl. Opt. 23, 3221–3235 (1984).
[CrossRef] [PubMed]

M. C. Hettrick, S. Bowyer, “Grazing Incidence Telescopes: a New Class for X-Ray and EUV Spectroscopy,” Appl. Opt. 23, 3732–3735 (1984).
[CrossRef] [PubMed]

M. C. Hettrick, “Grazing Incidence Echelle Spectrometers Using Varied Line-Space Gratings,” Appl. Opt. 24, 1251–1255 (1985).
[CrossRef] [PubMed]

D. J. Schroeder, “An Echelle Spectrometer-Spectrograph for Astronomical Use,” Appl. Opt. 6, 1976–1980 (1967).
[CrossRef] [PubMed]

W. Werner, “The Geometric Optical Aberration Theory of Diffraction Gratings,” Appl. Opt. 6, 1691–1699 (1967).
[CrossRef] [PubMed]

D. J. Schroeder, R. L. Hilliard, “Echelle Efficiencies: Theory and Experiment,” Appl. Opt. 19, 2833–2841 (1980).
[CrossRef] [PubMed]

M. A. Gil, J. M. Simon, “Diffraction Grating and Optical Aberrations: A New and Exact Formulation,” Appl. Opt. 24, 2956–2958 (1985).
[CrossRef] [PubMed]

M. Koike, K. Ohkubo, “Holographic Concave Gratings for Use with an Off-Plane Constant-Deviation Monochromator,” Appl. Opt. 25, 4071–4075 (1986).
[CrossRef] [PubMed]

W. Werner, “X-Ray Efficiencies of Blazed Gratings in Extreme Off-Plane Mountings,” Appl. Opt. 16, 2078–2080 (1977).
[CrossRef] [PubMed]

M. Neviere, P. Vincent, D. Maystre, “X-Ray Efficiencies of Gratings,” Appl. Opt. 17, 843–845 (1978).
[CrossRef] [PubMed]

W. Cash, R. Kohnert, “Very High X-Ray Efficiency from a Blazed Grating,” Appl. Opt. 21, 17–18 (1982).
[CrossRef] [PubMed]

W. Werner, H. Visser, “X-Ray Monochromator Designs Based on Extreme Off-Plane Grating Mountings,” Appl. Opt. 20, 487–492 (1981).
[CrossRef] [PubMed]

P. Lindblom, B. Sandberg, “New Eagle-Type Monochromator Mounting with Ruled Diffraction Grating at 45° Off-Plane,” Appl. Opt. 19, 1941–1945 (1980).
[CrossRef] [PubMed]

W. Cash, “Echelle Spectrographs at Grazing Incidence,” Appl. Opt. 21, 710–717 (1982).
[CrossRef] [PubMed]

M. C. E. Huber, G. Tondello, “Stigmatic Performance of an EUV Spectrograph with a Single Toroidal Grating,” Appl. Opt. 18, 3948–3953 (1979).
[CrossRef] [PubMed]

M. S. Miller, A. J. Caruso, B. E. Woodgate, A. A. Sterk, “Ultraviolet Spectrometer and Polarimeter for the Solar Maximum Mission,” Appl. Opt. 20, 3805–3814 (1981).
[CrossRef] [PubMed]

Astrophys. J. (1)

R. M. Bonnet et al., “The LPSP Instrument on OSO8. II In-Flight Performances and Preliminary Results,” Astrophys. J. 221, 1032–1061 (1978).
[CrossRef]

J. Opt. Paris (2)

L. Mashev, E. Popov, “Reflection Grating in Conical Diffraction Mountings,” J. Opt. Paris 18, 3–8 (1987).
[CrossRef]

E. Popov, L. Mashev, “Conical Diffraction Mountings. Generalisation of a Rigourous Differential Method,” J. Opt. Paris 17, 175–180 (1986).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Commun (2)

D. Maystre, R. Petit, “Sur la diffraction d’une onde plane par un reseau infiniment conducteur,” Opt. Commun 4, 97–101 (1971).
[CrossRef]

M. Neviere, M. Cadilhac, “Sur la diffraction d’une onde electromagnetique plane par un reseau infiniment conducteur, lorsque le vecteur d’onde incident n’est pas orthogonal aux sillons,” Opt. Commun 4, 13–18 (1971).
[CrossRef]

Opt. Commun. (1)

D. Maystre, R. Petit, “Principe d’un spectromètre à réseau à transmission constante,” Opt. Commun. 5, 35–38 (1972).
[CrossRef]

Opt. Eng. (1)

M. V. Murty, “Theory and Principles of Monochromators, Spectrometers and Spectrographs,” Opt. Eng. 13, 23–39 (1974).
[CrossRef]

Optik Stuttgart (1)

J. Dahlbacka, P. Lindblom, A. Danielsson, “Focusing Conditions for Gratings with Two Planes of Symmetry,” Optik Stuttgart 43, 213–223 (1975).

Proc. Soc. Photo-Opt. Instrum. Eng. (4)

W. E. McClintock, W. Cash, “Grazing Incidence Optics: New Techniques for High Sensitivity Spectroscopy in the Space Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 331, 321–331 (1982).

W. Werner, H. F. van Beek, “Grazing Incidence Focal Plane Instrument for the Wavelength Range 6.5–175 nm,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 272–278 (1983).

S. Mrowska, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160–164 (1985).

P. Lemaire, K. Wilhelm, “8–25 eV High Resolution Solar Spectrometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 1140, 522–527 (1989).

Publ. Astron. Soc. Pac. (2)

W. McClintock, “A High-Resolution Echelle Spectrograph Suitable for Astronomical Use at Both Far Ultraviolet and Visible Wavelengths,” Publ. Astron. Soc. Pac. 91, 712–718 (1979).
[CrossRef]

D. J. Schroeder, “Design Considerations for Astronomical Echelle Spectrographs,” Publ. Astron. Soc. Pac. 82, 1253–1275 (1970).
[CrossRef]

Space Sci. Instrum. (1)

M. C. E. Huber, J. G. Timothy, “Optical Design of a Stigmatic Spectroheliometer for Photometric Studies of Dynamic Phenomena at Extreme Ultraviolet Wavelengths,” Space Sci. Instrum. 3, 389–406 (1977).

Space Sci. Rev. (2)

W. A. Rense, “Techniques for Rocket Solar UV and for UV Spectroscopy,” Space Sci. Rev. 5, 234–264 (1966).
[CrossRef]

W. Werner, “X-Ray and Extended UV Spectrometer Designs Based on Off-Plane Grating Mountings,” Space Sci. Rev. 29, 455–459 (1981).
[CrossRef]

Other (3)

D. J. Schroeder, Astronomical Optics (Academic, London, 1987), p. 261.

D. Maystre, M. Neviere, R. Petit, “Experimental Verifications and Application of the Theory,” in Electromagnetic Theory of Gratings, R. Petit, Ed. (Springer-Verlag, New York, 1980), p. 159.
[CrossRef]

K. Wilhelm et al., “Solar Ultraviolet Measurement of Emitted Radiation-SUMER,” in The SOHO Mission-Scientific and Technical Aspects of the Instruments, ESA SP-1104, 31 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Conical diffraction spectrometer using one grating, developed to analyze the synchrotron radiation beam, as proposed by Werner and Visser.17 (b) Conical diffraction spectrometer to be used in the focal plane of a grazing incidence solar telescope, as proposed by Werner.28

Fig. 2
Fig. 2

Reference system of the conical diffraction grating. As defined by Cash,20 γ is the altitude of the coordinate system; the azimuth is given by α and β, the incident and diffracted angles.

Fig. 3
Fig. 3

Additive conical diffraction mounting using two identical gratings. The direction of the output beam rotates with wavelength.

Fig. 4
Fig. 4

Additive conical diffraction mounting using two identical gratings and two mirrors. The input and output beams are on line.

Fig. 5
Fig. 5

Additive conical diffraction mounting using one grating and one mirror. By a double pass on the grating the entrance and output beams are in the same plane and in the same sector, and the slit rotation is minimized.

Fig. 6
Fig. 6

Schematic of a proposed compact high resolution solar telescope–spectrometer using the conical diffraction tandem mounting.

Fig. 7
Fig. 7

Angular and spectral resolution of the conical diffraction tandem mounting described in this paper, in the vicinity of 70 nm. Values are given along the dispersion plane for several positions along the slit corresponding to 0.0-, 1.5-, and 3.0-min of arc off-axis on the solar image formed on the entrance slit.

Fig. 8
Fig. 8

Resolving power of several solar spectrometers as a function of wavelength (taking into account the slit image): WvB, Werner and van Beek (1983)29; RHT, Reeves, Huber, and Timothy (1977)38; HTi77, Huber and Timothy (1977)40; HTo, Huber and Tondello (1979).41

Fig. 9
Fig. 9

Angular resolution (in the detector plane) along the slit image. Seconds of arc off-axis corresponds to the distance to slit center of solar structures imaged on the slit. (A bidimensional detector is assumed.) Symbols are the same as in Fig. 8.

Fig. 10
Fig. 10

Equivalent area efficiency (cm2) as a function of wavelength for the solar spectrometers referenced in Fig. 8. The efficiency takes into account the collecting surface and the efficiency of each optical surface (the detector is excluded). Two different optical surface coatings (iridium and CVD-SiC) are computed for the instrumentation described in this paper.

Tables (2)

Tables Icon

Table I Instrumental Parameters

Tables Icon

Table II Main Characteristics of Several UV/EUV Solar Spectrometers

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

( n λ ) / d = sin γ ( sin α + sin β ) ,
2 sin γ sin Ψ b = ( n λ ) / d .
tan κ cos β + tan ρ cos α = ( sin α + sin β ) cos γ cos α cos β ,
tan κ = cos γ ( sin α + sin β ) cos α .
tan γ cos α = λ n d tan κ .
tan κ cos β + tan ρ cos α = ( sin α + sin β ) cos γ cos α cos β ,
tan κ cos β + tan ρ cos α = ( sin α + sin β ) cos γ cos α cos β .
tan ρ = ( sin α + sin β ) cos γ cos β tan κ · cos α cos β ,
tan κ = tan ρ = ( sin α + sin β ) cos γ cos β tan κ cos α cos β .
tan ρ = ( sin α + sin β ) cos γ cos β cos α cos β [ ( sin α + sin β ) cos γ cos β tan κ cos α cos β ] ,
tan ρ = ( sin α + sin β ) cos γ cos β [ 1 cos α cos β ] + tan κ cos α cos α cos β cos β .
tan ρ = [ sin Ψ b + sin ( Ψ b + ) ] cos γ cos ( Ψ b + ) tan κ cos Ψ b cos ( Ψ b + ) ,
tan ρ [ sin ( Ψ b ) + sin ( Ψ b + 2 ) ] cos γ cos ( Ψ b + 2 ) tan κ cos ( Ψ b ) cos ( Ψ b + 2 ) ,
tan ρ cos γ cos ( Ψ b + 2 ) { [ sin ( Ψ b ) + sin ( Ψ b + 2 ) ] [ sin Ψ b + sin ( Ψ b + ) ] cos ( Ψ b ) cos ( Ψ b + ) } + tan κ cos Ψ b cos ( Ψ b ) cos ( Ψ b + ) cos ( Ψ b + 2 ) .
tan ρ cos γ ( 2 tan Ψ b + ) 1 2 tan Ψ b ( 1 1 + tan Ψ b 1 tan Ψ b ) + tan κ ( 1 + tan Ψ b ) ( 1 tan Ψ b ) ( 1 2 tan Ψ b ) .
R = λ δλ 2 tan β sin γ δ B ,

Metrics