Abstract

Simultaneous spatially and temporally resolved measurements of N2 and O2 mole fractions and of temperature are performed using coherent anti-Stokes Raman scattering (CARS). The CARS setup is used with the crossed-beam arrangement (BOXCARS) and nonresonant-background suppression. The technique employs two Stokes lasers, broadband and narrowband, in combination with a frequency-doubled Nd:YAG laser. Temperature and N2 mole fractions are obtained by single-shot multiplex CARS spectra of N2 using the broadband laser; O2 mole fractions are deduced from a particular rovibrational Q-line of O2 using the narrowband dye laser. The single-shot detectivity limit is better than 0.4% for oxygen at 2200 K and atmospheric pressure, i.e., 1016 molecules × cm−3. The capability of the technique for measuring 2-D probability density functions is demonstrated in the simple cases of an isothermal jet and a laminar premixed flame of air and ethylene. The experimental work reveals grave difficulties in using CARS for precise measurements of mole fractions: appreciable signals can be created very far from the geometrical focus; beam disruption by turbulence and the Stark effect cause large mole fraction measurement errors. These problems are discussed. Referencing the mole fraction of the second species by nitrogen mole fraction is demonstrated to be a solution for the turbulence effect in premixed flames.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Magre, P. Moreau, G. Collin, R. Borghi, M. Pealat, “Further Studies by CARS of Premixed Turbulent Combustion,” Combust. Flame 71, 147–168 (1988).
    [CrossRef]
  2. S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
    [CrossRef]
  3. S. Fujii, M. Gomi, K. Eguchi, S. Yamaguchi, Y. Jin, “Time-Resolved LDV and CARS Measurements in a Premixed Reacting Flow,” Combust. Sci. Technol. 36, 211–226 (1984).
    [CrossRef]
  4. L. P. Goss, G. Switzer, “Laser Optics/Combustion Diagnostics,” Final Report AFWAL-TR-86-2023 (1986).
  5. R. W. Dibble, P. Magre, R. W. Schefer, J. Y. Chen, V. Hartman, W. Kollmann, “Measurement of Joint Probability of Velocity and Mole Fractions in a Turbulent Nonpremixed Flame,” AIAA/ASME/SAE/Joint Propulsion Conference, AIAA Paper86-1666 (1986).
  6. R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame 67, 189–206 (1987).
    [CrossRef]
  7. A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence Interference with Raman Measurements in Nonpremixed Flames of Methane,” Combust. Flame 68, 109–119 (1987).
    [CrossRef]
  8. A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” Exp. Fluids 3, 301–314 (1985).
    [CrossRef]
  9. D. A. Greenhalgh, “Quantitative CARS Spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clarke, R. E. Hester, Eds. (Wiley, New York, 1987).
  10. R. L. Farrow, R. Trebino, R. E. Palmer, “High-Resolution CARS Measurements of Temperature Profiles and Pressure in a Tungsten Lamp,” Appl. Opt. 26, 331–335 (1987).
    [CrossRef] [PubMed]
  11. R. L. Farrow, “Accurate Measurements of Combustion Species Mole Fraction Using CARS,” AGARD Conf. Proc. 399, 3-1–3-16 (1986).
  12. R. P. Lucht, “Three-Laser Coherent Anti-Stokes Raman Scattering Measurements of Two Species,” Opt. Lett. 12, 78–80 (1987).
    [CrossRef] [PubMed]
  13. R. R. Antcliff, O. Jarrett, “Multi-Species Coherent Anti-Stokes Raman Scattering Instrument for Turbulent Combustion,” Rev. Sci. Instrum. 58, 2075–2080 (1987).
    [CrossRef]
  14. A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous, Multiple Species Measurements,” Appl. Opt. 24, 2731–2736 (1985).
    [CrossRef] [PubMed]
  15. J. H. Stufflebeam, A. C. Eckbreth, “CARS Diagnostics of Solid Propellant Combustion at Elevated Pressure,” Combust. Sci. Technol. 66, 163–179 (1989).
    [CrossRef]
  16. A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multicolor CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
    [CrossRef]
  17. K. V. Boyack, P. A. Hedman, “Measurements of Instantaneous Flame Properties in Turbulent Nonpremixed Jet Flames of CO/N2 Using Coherent Anti-Stokes Raman Spectroscopy (CARS),” PaperWSS/CI 89-50, Fall Meeting of Western States Section, The Combustion Institute (Oct. 1989), pp. 23–24.
  18. J. P. Boquillon, M. Pealat, P. Bouchardy, G. Collin, P. Magre, J. P. Taran, “Spatial Averaging and Multiplex Coherent Anti-Stokes Raman Scattering Temperature-Measurement Error,” Opt. Lett. 13, 722–724 (1988).
    [CrossRef] [PubMed]
  19. M. Pealat, M. Lefebvre, J. P. E. Taran, P. L. Kelley, “Sensitivity of Quantitative Vibrational Coherent Anti-Stokes Raman Spectroscopy to Saturation and Stark Shifts,” Phys. Rev. A 38, 1948–1965 (1988).
    [CrossRef] [PubMed]
  20. R. P. Lucht, R. L. Farrow, “Calculations of Saturation Line Shapes and Intensities in Coherent Anti-Stokes Raman Scattering Spectra of Nitrogen,” J. Opt. Soc. Am. B 5, 1243–1252 (1988).
    [CrossRef]
  21. R. K. Hanson, “Combustion Diagnostics: Planar Imaging Techniques,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1677–1691.
  22. D. R. Snelling, G. J. Smallwood, T. Parameswaran, “Effect of Detector Nonlinearity and Image Persistence on CARS Derived Temperature,” Appl. Opt. 28, 3233–3241 (1989).
    [CrossRef] [PubMed]
  23. S. Kroll, M. Alden, P. E. Bengtsson, C. Löfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl Phys. B 49, 445–453 (1989).
    [CrossRef]
  24. R. L. Farrow, R. P. Lucht, G. L. Clark, R. E. Palmer, “Species Concentration Measurements Using CARS with Non-resonant Susceptibility Normalization,” Appl. Opt. 24, 2241–2251 (1985).
    [CrossRef] [PubMed]
  25. M. Pealat, J. P. Taran, F. Moya, “CARS Spectrometer for Gases and Flames,” Opt. Laser Technol. 12, 21–24 (1980).
    [CrossRef]
  26. A. C. Eckbreth, “BOXCARS: Crossed Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421–423 (1978).
    [CrossRef]
  27. D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas-Phase CARS Spectroscopy,” J. Raman Spectrosc. 14, 150–153 (1983).
    [CrossRef]
  28. J. J. Song, G. L. Eesley, M. D. Levenson, “Background Suppression in Coherent Raman Spectroscopy,” Appl. Phys. Lett. 29, 567–569 (1976).
    [CrossRef]
  29. M. Pealat, P. Bouchardy, M. Lefebvre, J. P. Taran, “Precision of Multiplex CARS Temperature Measurements,” Appl. Opt. 24, 1012–1022 (1985).
    [CrossRef] [PubMed]
  30. J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman Scattering Spectra-Application to the SRS N2 Q-Branch,” Chem. Phys. 106, 427–439 (1986).
    [CrossRef]
  31. B. Lavorel et al., “Rotational Collisional Line Broadening at High Temperatures in the N2 Fundamental Q-Branch Studied with Stimulated Raman Spectroscopy,” J. Phys. 47, 417–425 (1986).
    [CrossRef]
  32. A. Gierulski, M. Noda, T. Yamamoto, G. Marowsky, A. Slenczka, “Pump-Induced Population Changes in Broadband Coherent Anti-Stokes Raman Scattering,” Opt. Lett. 12, 608–610 (1987).
    [CrossRef] [PubMed]

1989 (3)

J. H. Stufflebeam, A. C. Eckbreth, “CARS Diagnostics of Solid Propellant Combustion at Elevated Pressure,” Combust. Sci. Technol. 66, 163–179 (1989).
[CrossRef]

D. R. Snelling, G. J. Smallwood, T. Parameswaran, “Effect of Detector Nonlinearity and Image Persistence on CARS Derived Temperature,” Appl. Opt. 28, 3233–3241 (1989).
[CrossRef] [PubMed]

S. Kroll, M. Alden, P. E. Bengtsson, C. Löfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl Phys. B 49, 445–453 (1989).
[CrossRef]

1988 (5)

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multicolor CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

J. P. Boquillon, M. Pealat, P. Bouchardy, G. Collin, P. Magre, J. P. Taran, “Spatial Averaging and Multiplex Coherent Anti-Stokes Raman Scattering Temperature-Measurement Error,” Opt. Lett. 13, 722–724 (1988).
[CrossRef] [PubMed]

M. Pealat, M. Lefebvre, J. P. E. Taran, P. L. Kelley, “Sensitivity of Quantitative Vibrational Coherent Anti-Stokes Raman Spectroscopy to Saturation and Stark Shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

R. P. Lucht, R. L. Farrow, “Calculations of Saturation Line Shapes and Intensities in Coherent Anti-Stokes Raman Scattering Spectra of Nitrogen,” J. Opt. Soc. Am. B 5, 1243–1252 (1988).
[CrossRef]

P. Magre, P. Moreau, G. Collin, R. Borghi, M. Pealat, “Further Studies by CARS of Premixed Turbulent Combustion,” Combust. Flame 71, 147–168 (1988).
[CrossRef]

1987 (6)

R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence Interference with Raman Measurements in Nonpremixed Flames of Methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. L. Farrow, R. Trebino, R. E. Palmer, “High-Resolution CARS Measurements of Temperature Profiles and Pressure in a Tungsten Lamp,” Appl. Opt. 26, 331–335 (1987).
[CrossRef] [PubMed]

R. P. Lucht, “Three-Laser Coherent Anti-Stokes Raman Scattering Measurements of Two Species,” Opt. Lett. 12, 78–80 (1987).
[CrossRef] [PubMed]

R. R. Antcliff, O. Jarrett, “Multi-Species Coherent Anti-Stokes Raman Scattering Instrument for Turbulent Combustion,” Rev. Sci. Instrum. 58, 2075–2080 (1987).
[CrossRef]

A. Gierulski, M. Noda, T. Yamamoto, G. Marowsky, A. Slenczka, “Pump-Induced Population Changes in Broadband Coherent Anti-Stokes Raman Scattering,” Opt. Lett. 12, 608–610 (1987).
[CrossRef] [PubMed]

1986 (3)

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman Scattering Spectra-Application to the SRS N2 Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

B. Lavorel et al., “Rotational Collisional Line Broadening at High Temperatures in the N2 Fundamental Q-Branch Studied with Stimulated Raman Spectroscopy,” J. Phys. 47, 417–425 (1986).
[CrossRef]

R. L. Farrow, “Accurate Measurements of Combustion Species Mole Fraction Using CARS,” AGARD Conf. Proc. 399, 3-1–3-16 (1986).

1985 (4)

1984 (1)

S. Fujii, M. Gomi, K. Eguchi, S. Yamaguchi, Y. Jin, “Time-Resolved LDV and CARS Measurements in a Premixed Reacting Flow,” Combust. Sci. Technol. 36, 211–226 (1984).
[CrossRef]

1983 (1)

D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas-Phase CARS Spectroscopy,” J. Raman Spectrosc. 14, 150–153 (1983).
[CrossRef]

1981 (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

1980 (1)

M. Pealat, J. P. Taran, F. Moya, “CARS Spectrometer for Gases and Flames,” Opt. Laser Technol. 12, 21–24 (1980).
[CrossRef]

1978 (1)

A. C. Eckbreth, “BOXCARS: Crossed Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

1976 (1)

J. J. Song, G. L. Eesley, M. D. Levenson, “Background Suppression in Coherent Raman Spectroscopy,” Appl. Phys. Lett. 29, 567–569 (1976).
[CrossRef]

Alden, M.

S. Kroll, M. Alden, P. E. Bengtsson, C. Löfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl Phys. B 49, 445–453 (1989).
[CrossRef]

Anderson, T. J.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multicolor CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous, Multiple Species Measurements,” Appl. Opt. 24, 2731–2736 (1985).
[CrossRef] [PubMed]

Antcliff, R. R.

R. R. Antcliff, O. Jarrett, “Multi-Species Coherent Anti-Stokes Raman Scattering Instrument for Turbulent Combustion,” Rev. Sci. Instrum. 58, 2075–2080 (1987).
[CrossRef]

Bengtsson, P. E.

S. Kroll, M. Alden, P. E. Bengtsson, C. Löfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl Phys. B 49, 445–453 (1989).
[CrossRef]

Berger, H.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman Scattering Spectra-Application to the SRS N2 Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Bilger, R. W.

A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence Interference with Raman Measurements in Nonpremixed Flames of Methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Bonamy, J.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman Scattering Spectra-Application to the SRS N2 Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Boquillon, J. P.

Borghi, R.

P. Magre, P. Moreau, G. Collin, R. Borghi, M. Pealat, “Further Studies by CARS of Premixed Turbulent Combustion,” Combust. Flame 71, 147–168 (1988).
[CrossRef]

Bouchardy, P.

Boyack, K. V.

K. V. Boyack, P. A. Hedman, “Measurements of Instantaneous Flame Properties in Turbulent Nonpremixed Jet Flames of CO/N2 Using Coherent Anti-Stokes Raman Spectroscopy (CARS),” PaperWSS/CI 89-50, Fall Meeting of Western States Section, The Combustion Institute (Oct. 1989), pp. 23–24.

Chen, J. Y.

R. W. Dibble, P. Magre, R. W. Schefer, J. Y. Chen, V. Hartman, W. Kollmann, “Measurement of Joint Probability of Velocity and Mole Fractions in a Turbulent Nonpremixed Flame,” AIAA/ASME/SAE/Joint Propulsion Conference, AIAA Paper86-1666 (1986).

Clark, G. L.

Collin, G.

Dibble, R. W.

R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence Interference with Raman Measurements in Nonpremixed Flames of Methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, P. Magre, R. W. Schefer, J. Y. Chen, V. Hartman, W. Kollmann, “Measurement of Joint Probability of Velocity and Mole Fractions in a Turbulent Nonpremixed Flame,” AIAA/ASME/SAE/Joint Propulsion Conference, AIAA Paper86-1666 (1986).

Dobbs, G. M.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multicolor CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

Druet, S. A. J.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Eckbreth, A. C.

J. H. Stufflebeam, A. C. Eckbreth, “CARS Diagnostics of Solid Propellant Combustion at Elevated Pressure,” Combust. Sci. Technol. 66, 163–179 (1989).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multicolor CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous, Multiple Species Measurements,” Appl. Opt. 24, 2731–2736 (1985).
[CrossRef] [PubMed]

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” Exp. Fluids 3, 301–314 (1985).
[CrossRef]

A. C. Eckbreth, “BOXCARS: Crossed Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

Eesley, G. L.

J. J. Song, G. L. Eesley, M. D. Levenson, “Background Suppression in Coherent Raman Spectroscopy,” Appl. Phys. Lett. 29, 567–569 (1976).
[CrossRef]

Eguchi, K.

S. Fujii, M. Gomi, K. Eguchi, S. Yamaguchi, Y. Jin, “Time-Resolved LDV and CARS Measurements in a Premixed Reacting Flow,” Combust. Sci. Technol. 36, 211–226 (1984).
[CrossRef]

Farrow, R. L.

Fujii, S.

S. Fujii, M. Gomi, K. Eguchi, S. Yamaguchi, Y. Jin, “Time-Resolved LDV and CARS Measurements in a Premixed Reacting Flow,” Combust. Sci. Technol. 36, 211–226 (1984).
[CrossRef]

Gierulski, A.

Gomi, M.

S. Fujii, M. Gomi, K. Eguchi, S. Yamaguchi, Y. Jin, “Time-Resolved LDV and CARS Measurements in a Premixed Reacting Flow,” Combust. Sci. Technol. 36, 211–226 (1984).
[CrossRef]

Goss, L. P.

L. P. Goss, G. Switzer, “Laser Optics/Combustion Diagnostics,” Final Report AFWAL-TR-86-2023 (1986).

Greenhalgh, D. A.

D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas-Phase CARS Spectroscopy,” J. Raman Spectrosc. 14, 150–153 (1983).
[CrossRef]

D. A. Greenhalgh, “Quantitative CARS Spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clarke, R. E. Hester, Eds. (Wiley, New York, 1987).

Hanson, R. K.

R. K. Hanson, “Combustion Diagnostics: Planar Imaging Techniques,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1677–1691.

Hartman, V.

R. W. Dibble, P. Magre, R. W. Schefer, J. Y. Chen, V. Hartman, W. Kollmann, “Measurement of Joint Probability of Velocity and Mole Fractions in a Turbulent Nonpremixed Flame,” AIAA/ASME/SAE/Joint Propulsion Conference, AIAA Paper86-1666 (1986).

Hedman, P. A.

K. V. Boyack, P. A. Hedman, “Measurements of Instantaneous Flame Properties in Turbulent Nonpremixed Jet Flames of CO/N2 Using Coherent Anti-Stokes Raman Spectroscopy (CARS),” PaperWSS/CI 89-50, Fall Meeting of Western States Section, The Combustion Institute (Oct. 1989), pp. 23–24.

Jarrett, O.

R. R. Antcliff, O. Jarrett, “Multi-Species Coherent Anti-Stokes Raman Scattering Instrument for Turbulent Combustion,” Rev. Sci. Instrum. 58, 2075–2080 (1987).
[CrossRef]

Jin, Y.

S. Fujii, M. Gomi, K. Eguchi, S. Yamaguchi, Y. Jin, “Time-Resolved LDV and CARS Measurements in a Premixed Reacting Flow,” Combust. Sci. Technol. 36, 211–226 (1984).
[CrossRef]

Kelley, P. L.

M. Pealat, M. Lefebvre, J. P. E. Taran, P. L. Kelley, “Sensitivity of Quantitative Vibrational Coherent Anti-Stokes Raman Spectroscopy to Saturation and Stark Shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

Kollmann, W.

R. W. Dibble, P. Magre, R. W. Schefer, J. Y. Chen, V. Hartman, W. Kollmann, “Measurement of Joint Probability of Velocity and Mole Fractions in a Turbulent Nonpremixed Flame,” AIAA/ASME/SAE/Joint Propulsion Conference, AIAA Paper86-1666 (1986).

Kroll, S.

S. Kroll, M. Alden, P. E. Bengtsson, C. Löfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl Phys. B 49, 445–453 (1989).
[CrossRef]

Lavorel, B.

B. Lavorel et al., “Rotational Collisional Line Broadening at High Temperatures in the N2 Fundamental Q-Branch Studied with Stimulated Raman Spectroscopy,” J. Phys. 47, 417–425 (1986).
[CrossRef]

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman Scattering Spectra-Application to the SRS N2 Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Lefebvre, M.

M. Pealat, M. Lefebvre, J. P. E. Taran, P. L. Kelley, “Sensitivity of Quantitative Vibrational Coherent Anti-Stokes Raman Spectroscopy to Saturation and Stark Shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

M. Pealat, P. Bouchardy, M. Lefebvre, J. P. Taran, “Precision of Multiplex CARS Temperature Measurements,” Appl. Opt. 24, 1012–1022 (1985).
[CrossRef] [PubMed]

Levenson, M. D.

J. J. Song, G. L. Eesley, M. D. Levenson, “Background Suppression in Coherent Raman Spectroscopy,” Appl. Phys. Lett. 29, 567–569 (1976).
[CrossRef]

Löfström, C.

S. Kroll, M. Alden, P. E. Bengtsson, C. Löfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl Phys. B 49, 445–453 (1989).
[CrossRef]

Lucht, R. P.

Magre, P.

P. Magre, P. Moreau, G. Collin, R. Borghi, M. Pealat, “Further Studies by CARS of Premixed Turbulent Combustion,” Combust. Flame 71, 147–168 (1988).
[CrossRef]

J. P. Boquillon, M. Pealat, P. Bouchardy, G. Collin, P. Magre, J. P. Taran, “Spatial Averaging and Multiplex Coherent Anti-Stokes Raman Scattering Temperature-Measurement Error,” Opt. Lett. 13, 722–724 (1988).
[CrossRef] [PubMed]

R. W. Dibble, P. Magre, R. W. Schefer, J. Y. Chen, V. Hartman, W. Kollmann, “Measurement of Joint Probability of Velocity and Mole Fractions in a Turbulent Nonpremixed Flame,” AIAA/ASME/SAE/Joint Propulsion Conference, AIAA Paper86-1666 (1986).

Marowsky, G.

Masri, A. R.

A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence Interference with Raman Measurements in Nonpremixed Flames of Methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Millot, G.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman Scattering Spectra-Application to the SRS N2 Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Moreau, P.

P. Magre, P. Moreau, G. Collin, R. Borghi, M. Pealat, “Further Studies by CARS of Premixed Turbulent Combustion,” Combust. Flame 71, 147–168 (1988).
[CrossRef]

Moya, F.

M. Pealat, J. P. Taran, F. Moya, “CARS Spectrometer for Gases and Flames,” Opt. Laser Technol. 12, 21–24 (1980).
[CrossRef]

Noda, M.

Palmer, R. E.

Parameswaran, T.

Pealat, M.

M. Pealat, M. Lefebvre, J. P. E. Taran, P. L. Kelley, “Sensitivity of Quantitative Vibrational Coherent Anti-Stokes Raman Spectroscopy to Saturation and Stark Shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

J. P. Boquillon, M. Pealat, P. Bouchardy, G. Collin, P. Magre, J. P. Taran, “Spatial Averaging and Multiplex Coherent Anti-Stokes Raman Scattering Temperature-Measurement Error,” Opt. Lett. 13, 722–724 (1988).
[CrossRef] [PubMed]

P. Magre, P. Moreau, G. Collin, R. Borghi, M. Pealat, “Further Studies by CARS of Premixed Turbulent Combustion,” Combust. Flame 71, 147–168 (1988).
[CrossRef]

M. Pealat, P. Bouchardy, M. Lefebvre, J. P. Taran, “Precision of Multiplex CARS Temperature Measurements,” Appl. Opt. 24, 1012–1022 (1985).
[CrossRef] [PubMed]

M. Pealat, J. P. Taran, F. Moya, “CARS Spectrometer for Gases and Flames,” Opt. Laser Technol. 12, 21–24 (1980).
[CrossRef]

Robert, D.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman Scattering Spectra-Application to the SRS N2 Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Sala, J. P.

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman Scattering Spectra-Application to the SRS N2 Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Schefer, R. W.

R. W. Dibble, P. Magre, R. W. Schefer, J. Y. Chen, V. Hartman, W. Kollmann, “Measurement of Joint Probability of Velocity and Mole Fractions in a Turbulent Nonpremixed Flame,” AIAA/ASME/SAE/Joint Propulsion Conference, AIAA Paper86-1666 (1986).

Slenczka, A.

Smallwood, G. J.

Snelling, D. R.

Song, J. J.

J. J. Song, G. L. Eesley, M. D. Levenson, “Background Suppression in Coherent Raman Spectroscopy,” Appl. Phys. Lett. 29, 567–569 (1976).
[CrossRef]

Stufflebeam, J. H.

J. H. Stufflebeam, A. C. Eckbreth, “CARS Diagnostics of Solid Propellant Combustion at Elevated Pressure,” Combust. Sci. Technol. 66, 163–179 (1989).
[CrossRef]

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” Exp. Fluids 3, 301–314 (1985).
[CrossRef]

Switzer, G.

L. P. Goss, G. Switzer, “Laser Optics/Combustion Diagnostics,” Final Report AFWAL-TR-86-2023 (1986).

Taran, J. P.

Taran, J. P. E.

M. Pealat, M. Lefebvre, J. P. E. Taran, P. L. Kelley, “Sensitivity of Quantitative Vibrational Coherent Anti-Stokes Raman Spectroscopy to Saturation and Stark Shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Trebino, R.

Yamaguchi, S.

S. Fujii, M. Gomi, K. Eguchi, S. Yamaguchi, Y. Jin, “Time-Resolved LDV and CARS Measurements in a Premixed Reacting Flow,” Combust. Sci. Technol. 36, 211–226 (1984).
[CrossRef]

Yamamoto, T.

AGARD Conf. Proc. (1)

R. L. Farrow, “Accurate Measurements of Combustion Species Mole Fraction Using CARS,” AGARD Conf. Proc. 399, 3-1–3-16 (1986).

Appl Phys. B (1)

S. Kroll, M. Alden, P. E. Bengtsson, C. Löfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl Phys. B 49, 445–453 (1989).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multicolor CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

Appl. Phys. Lett. (2)

J. J. Song, G. L. Eesley, M. D. Levenson, “Background Suppression in Coherent Raman Spectroscopy,” Appl. Phys. Lett. 29, 567–569 (1976).
[CrossRef]

A. C. Eckbreth, “BOXCARS: Crossed Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

Chem. Phys. (1)

J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, “A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman Scattering Spectra-Application to the SRS N2 Q-Branch,” Chem. Phys. 106, 427–439 (1986).
[CrossRef]

Combust. Flame (3)

P. Magre, P. Moreau, G. Collin, R. Borghi, M. Pealat, “Further Studies by CARS of Premixed Turbulent Combustion,” Combust. Flame 71, 147–168 (1988).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence Interference with Raman Measurements in Nonpremixed Flames of Methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

Combust. Sci. Technol. (2)

S. Fujii, M. Gomi, K. Eguchi, S. Yamaguchi, Y. Jin, “Time-Resolved LDV and CARS Measurements in a Premixed Reacting Flow,” Combust. Sci. Technol. 36, 211–226 (1984).
[CrossRef]

J. H. Stufflebeam, A. C. Eckbreth, “CARS Diagnostics of Solid Propellant Combustion at Elevated Pressure,” Combust. Sci. Technol. 66, 163–179 (1989).
[CrossRef]

Exp. Fluids (1)

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” Exp. Fluids 3, 301–314 (1985).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

B. Lavorel et al., “Rotational Collisional Line Broadening at High Temperatures in the N2 Fundamental Q-Branch Studied with Stimulated Raman Spectroscopy,” J. Phys. 47, 417–425 (1986).
[CrossRef]

J. Raman Spectrosc. (1)

D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas-Phase CARS Spectroscopy,” J. Raman Spectrosc. 14, 150–153 (1983).
[CrossRef]

Opt. Laser Technol. (1)

M. Pealat, J. P. Taran, F. Moya, “CARS Spectrometer for Gases and Flames,” Opt. Laser Technol. 12, 21–24 (1980).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

M. Pealat, M. Lefebvre, J. P. E. Taran, P. L. Kelley, “Sensitivity of Quantitative Vibrational Coherent Anti-Stokes Raman Spectroscopy to Saturation and Stark Shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Rev. Sci. Instrum. (1)

R. R. Antcliff, O. Jarrett, “Multi-Species Coherent Anti-Stokes Raman Scattering Instrument for Turbulent Combustion,” Rev. Sci. Instrum. 58, 2075–2080 (1987).
[CrossRef]

Other (5)

K. V. Boyack, P. A. Hedman, “Measurements of Instantaneous Flame Properties in Turbulent Nonpremixed Jet Flames of CO/N2 Using Coherent Anti-Stokes Raman Spectroscopy (CARS),” PaperWSS/CI 89-50, Fall Meeting of Western States Section, The Combustion Institute (Oct. 1989), pp. 23–24.

L. P. Goss, G. Switzer, “Laser Optics/Combustion Diagnostics,” Final Report AFWAL-TR-86-2023 (1986).

R. W. Dibble, P. Magre, R. W. Schefer, J. Y. Chen, V. Hartman, W. Kollmann, “Measurement of Joint Probability of Velocity and Mole Fractions in a Turbulent Nonpremixed Flame,” AIAA/ASME/SAE/Joint Propulsion Conference, AIAA Paper86-1666 (1986).

D. A. Greenhalgh, “Quantitative CARS Spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clarke, R. E. Hester, Eds. (Wiley, New York, 1987).

R. K. Hanson, “Combustion Diagnostics: Planar Imaging Techniques,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1677–1691.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Measurement system (the BOXCARS arrangement is shown, and the reference and signal channels are set up in series): NG, neutral glass filter; DF, dichroic filter; GT, Glan-Thompson prism; d, diaphragm; PMT, photomultiplier tube; OMA, optical multichannel analyzer; F1, 500-mm focal length achromat; F2, 250-mm focal length achromat.

Fig. 2
Fig. 2

Laser source: A, Nd:YAG amplifier; BD, parallel plate for production of parallel beams for BOXCARS; D1 and D2, KDP doublers; DC, dye cell; DM, dichroic mirror; E, Fabry-Perot etalon; G, grating; GT, Glan-Thompson prism; P, antireflection coated plate for beam translation; SA, saturable absorber; T, telescope; λ/4 and λ/2, quarterwave and halfwave plates, respectively.

Fig. 3
Fig. 3

Experimental O2 spectra: (a) at room temperature; (b) at 1500 K in a furnace.

Fig. 4
Fig. 4

Theoretical integrated areas of J=5(+), J = 13(□), and J = 21 (Δ) O2 rotational lines vs temperature. The signal intensity is integrated over 0.25 cm−1 around the peak of the J rotational lines. Theoretical CARS spectra are calculated at a fixed number density.

Fig. 5
Fig. 5

Average O2 and N2 mole fraction measurements in an isothermal jet.

Fig. 6
Fig. 6

Single shot O2 and N2 mole fraction measurements in an isothermal jet: (a) standard processing; (b) processing at a fixed temperature.

Fig. 7
Fig. 7

Average temperature and average O2 and N2 profiles in a laminar premixed flame. The symbols surrounded with ○ denote measurements obtained when the laser beams are disturbed by turbulence.

Fig. 8
Fig. 8

Average temperature ○ and O2 mole fractions + vs the equivalence ratio in a laminar flame (——equilibrium curves).

Fig. 9
Fig. 9

Partial oxygen spectra for J = 19 and J = 21: experimental results of the flame (——); theory at 300 K (------); theory at 2200 K(---).

Fig. 10
Fig. 10

Single-shot O2 and N2 mole fraction measurements: +, standard processing; Δ, processed at fixed temperature.

Fig. 11
Fig. 11

Single-shot O2 and N2 mole fraction measurements with the effect of turbulence: (a) absolute mole fractions; (b) relative mole fractions: +, no perturbation of laser beams; Δ, with perturbation of laser beams.

Tables (1)

Tables Icon

Table I Effect of Power Density on Measurements

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A e ( T ) = K n i 2 A t ( T ) ,
n i = n i cal [ A e ( T ) A e ( T cal ) × A t ( T cal ) A t ( T ) ] 1 / 2
c i = c i cal × n i n i cal × T T cal .
σ 2 ( c i ) = σ 2 ( T ) + σ 2 ( n i ) .
σ 2 ( n O 2 / n N 2 ) = σ 2 ( n O 2 ) + σ 2 ( n N 2 ) ,

Metrics