Abstract

A Michelson interferometer has been built to measure the wind and temperature in the earth’s upper atmosphere using nightglow emissions from atomic oxygen and radical OH. The interferometer uses field compensation to give large geometric etendu allowing measurements with emission lines of intensity of ~30 R at zenith. For wind measurement, it is thermally stabilized permitting operation without difficulty. The instrument incorporates calibration sources allowing temperature and wind measurements. It is operated at the Observatoire de Haute-Provence (43°56′N, 5°43′E, France) in summer and Sodankyla (67°22′N, 26°38′E, Finland) in winter. Its performance is illustrated by some examples of measurements and results.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bouchareine, P. Connes, “Interferometer with Compensated Field for Fourier Transform Spectroscopy,” J. Phys. 24, 134–138 (1963).
  2. R. L. Hilliard, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Width,” Planet. Space Sci. 14, 386–406 (1966).
    [CrossRef]
  3. G. Thuillier, M. Herse, “Measurement of Wind in the Upper Atmosphere: First Results of the MICADO Instrument,” Progress in Atmospheric Physics (Kluwer Academic, Publishers, Dordecht, The Netherlands, 1988), pp. 61–73.
    [CrossRef]
  4. G. G. Shepherd et al., “Optical Doppler Imaging of the Aurora Borealis,” Geophys. Res. Lett. 11, 1003–1006 (1984).
    [CrossRef]
  5. G. Thuillier, G. G. Shepherd, “Fully Compensated Michelson Interferometer of Fixed-Path Difference,” Appl. Opt. 24, 1599–1602 (1985).
    [CrossRef] [PubMed]
  6. H. Niewenhuijzen, “On the Doppler Frequency Shift of Light Using Rotating Mirrors,” Bull. Astron. Inst. Neth. 20, 24–31 (1969).
  7. H. U. Widdel, “Vertical Movements in the Middle Atmosphere Derived from Foil Cloud Experiments,” J. Atmos. Terr. Phys. 49, 723–741 (1987).
    [CrossRef]
  8. D. Rees, R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, A. Steen, “The Generation of Vertical Thermospheric Wind by Gravity Waves at Auroral Latitudes,” Planet. Space Sci. 6, 667–684 (1984).
    [CrossRef]

1987

H. U. Widdel, “Vertical Movements in the Middle Atmosphere Derived from Foil Cloud Experiments,” J. Atmos. Terr. Phys. 49, 723–741 (1987).
[CrossRef]

1985

1984

D. Rees, R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, A. Steen, “The Generation of Vertical Thermospheric Wind by Gravity Waves at Auroral Latitudes,” Planet. Space Sci. 6, 667–684 (1984).
[CrossRef]

G. G. Shepherd et al., “Optical Doppler Imaging of the Aurora Borealis,” Geophys. Res. Lett. 11, 1003–1006 (1984).
[CrossRef]

1969

H. Niewenhuijzen, “On the Doppler Frequency Shift of Light Using Rotating Mirrors,” Bull. Astron. Inst. Neth. 20, 24–31 (1969).

1966

R. L. Hilliard, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Width,” Planet. Space Sci. 14, 386–406 (1966).
[CrossRef]

1963

P. Bouchareine, P. Connes, “Interferometer with Compensated Field for Fourier Transform Spectroscopy,” J. Phys. 24, 134–138 (1963).

Bouchareine, P.

P. Bouchareine, P. Connes, “Interferometer with Compensated Field for Fourier Transform Spectroscopy,” J. Phys. 24, 134–138 (1963).

Charleton, P. J.

D. Rees, R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, A. Steen, “The Generation of Vertical Thermospheric Wind by Gravity Waves at Auroral Latitudes,” Planet. Space Sci. 6, 667–684 (1984).
[CrossRef]

Connes, P.

P. Bouchareine, P. Connes, “Interferometer with Compensated Field for Fourier Transform Spectroscopy,” J. Phys. 24, 134–138 (1963).

Herse, M.

G. Thuillier, M. Herse, “Measurement of Wind in the Upper Atmosphere: First Results of the MICADO Instrument,” Progress in Atmospheric Physics (Kluwer Academic, Publishers, Dordecht, The Netherlands, 1988), pp. 61–73.
[CrossRef]

Hilliard, R. L.

R. L. Hilliard, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Width,” Planet. Space Sci. 14, 386–406 (1966).
[CrossRef]

Lloyd, N.

D. Rees, R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, A. Steen, “The Generation of Vertical Thermospheric Wind by Gravity Waves at Auroral Latitudes,” Planet. Space Sci. 6, 667–684 (1984).
[CrossRef]

McCormac, F. G.

D. Rees, R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, A. Steen, “The Generation of Vertical Thermospheric Wind by Gravity Waves at Auroral Latitudes,” Planet. Space Sci. 6, 667–684 (1984).
[CrossRef]

Niewenhuijzen, H.

H. Niewenhuijzen, “On the Doppler Frequency Shift of Light Using Rotating Mirrors,” Bull. Astron. Inst. Neth. 20, 24–31 (1969).

Rees, D.

D. Rees, R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, A. Steen, “The Generation of Vertical Thermospheric Wind by Gravity Waves at Auroral Latitudes,” Planet. Space Sci. 6, 667–684 (1984).
[CrossRef]

Shepherd, G. G.

G. Thuillier, G. G. Shepherd, “Fully Compensated Michelson Interferometer of Fixed-Path Difference,” Appl. Opt. 24, 1599–1602 (1985).
[CrossRef] [PubMed]

G. G. Shepherd et al., “Optical Doppler Imaging of the Aurora Borealis,” Geophys. Res. Lett. 11, 1003–1006 (1984).
[CrossRef]

R. L. Hilliard, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Width,” Planet. Space Sci. 14, 386–406 (1966).
[CrossRef]

Smith, R. W.

D. Rees, R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, A. Steen, “The Generation of Vertical Thermospheric Wind by Gravity Waves at Auroral Latitudes,” Planet. Space Sci. 6, 667–684 (1984).
[CrossRef]

Steen, A.

D. Rees, R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, A. Steen, “The Generation of Vertical Thermospheric Wind by Gravity Waves at Auroral Latitudes,” Planet. Space Sci. 6, 667–684 (1984).
[CrossRef]

Thuillier, G.

G. Thuillier, G. G. Shepherd, “Fully Compensated Michelson Interferometer of Fixed-Path Difference,” Appl. Opt. 24, 1599–1602 (1985).
[CrossRef] [PubMed]

G. Thuillier, M. Herse, “Measurement of Wind in the Upper Atmosphere: First Results of the MICADO Instrument,” Progress in Atmospheric Physics (Kluwer Academic, Publishers, Dordecht, The Netherlands, 1988), pp. 61–73.
[CrossRef]

Widdel, H. U.

H. U. Widdel, “Vertical Movements in the Middle Atmosphere Derived from Foil Cloud Experiments,” J. Atmos. Terr. Phys. 49, 723–741 (1987).
[CrossRef]

Appl. Opt.

Bull. Astron. Inst. Neth.

H. Niewenhuijzen, “On the Doppler Frequency Shift of Light Using Rotating Mirrors,” Bull. Astron. Inst. Neth. 20, 24–31 (1969).

Geophys. Res. Lett.

G. G. Shepherd et al., “Optical Doppler Imaging of the Aurora Borealis,” Geophys. Res. Lett. 11, 1003–1006 (1984).
[CrossRef]

J. Atmos. Terr. Phys.

H. U. Widdel, “Vertical Movements in the Middle Atmosphere Derived from Foil Cloud Experiments,” J. Atmos. Terr. Phys. 49, 723–741 (1987).
[CrossRef]

J. Phys.

P. Bouchareine, P. Connes, “Interferometer with Compensated Field for Fourier Transform Spectroscopy,” J. Phys. 24, 134–138 (1963).

Planet. Space Sci.

R. L. Hilliard, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Width,” Planet. Space Sci. 14, 386–406 (1966).
[CrossRef]

D. Rees, R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, A. Steen, “The Generation of Vertical Thermospheric Wind by Gravity Waves at Auroral Latitudes,” Planet. Space Sci. 6, 667–684 (1984).
[CrossRef]

Other

G. Thuillier, M. Herse, “Measurement of Wind in the Upper Atmosphere: First Results of the MICADO Instrument,” Progress in Atmospheric Physics (Kluwer Academic, Publishers, Dordecht, The Netherlands, 1988), pp. 61–73.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Interferogram showing the scanning of two fringes.

Fig. 2
Fig. 2

Optical schematic.

Fig. 3
Fig. 3

Interferometer design. d1 = 41.240 mm, d2 = 9.365 mm, E = 45.970, a = 7.693 mm, L1 = 94.903 mm, L2 = 39.480.

Fig. 4
Fig. 4

Optical schematic for measuring glass characteristics.

Fig. 5
Fig. 5

Scanning of several fringes by natural cooling of a glass slab placed in one arm of an interferometer.

Fig. 6
Fig. 6

Instrument visibility for the laser line. Upper panel at normal incidence (entrance 1). Lower panel for the full field of view (entrance 2).

Fig. 7
Fig. 7

Rotating wheel which generates a variable Doppler shift.

Fig. 8
Fig. 8

Typical record consisting of background measurements and scanning of several airglow fringes and several laser fringes. The three measurements are simultaneous. Telescope was observing at zenith.

Fig. 9
Fig. 9

Diurnal variation of the meridional and zonal wind components measured in the thermosphere (positive values refer to northward and eastward wind).

Tables (6)

Tables Icon

Table I Physical Characteristics of the Atmosphere Observed by Use of the Selected Lines

Tables Icon

Table II Wedge Displacement as a Function of Wavelength

Tables Icon

Table III Number of Mechanical Steps to Scan a Fringe as a Function of Wavelength

Tables Icon

Table IV Interferometer Visibility as a Function of Wavelength

Tables Icon

Table V Results of the Velocity Calibration

Tables Icon

Table VI Accuracy of the Temperature Measurements

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

V 1 = I max I min I max + I min = exp ( Q λ 0 Δ 2 T )
δ φ = Φ Φ 0 = 2 π λ 0 D eff υ c ,
β λ = ( n T ) λ .
( Δ T ) λ 0 = 0 , ( 2 Δ λ T ) λ 0 = 0 .
( n 1 1 ) d 1 ( n 2 1 ) d 2 ( L 2 L 1 ) E = Δ 0 / 2 ,
( 1 1 n 1 ) d 1 ( 1 1 n 2 ) d 2 + ( L 2 L 1 ) + E = ,
G 1 d 1 G 2 d 2 α 1 ( L 2 L 1 ) γ E = 0 [ ( Δ 0 T ) λ 0 = 0 ] ,
d G 1 d λ d 1 d G 2 d λ d 2 = 0 [ ( 2 Δ 0 λ T ) λ 0 = 0 ] ,
Δ θ Δ 0 = θ 2 + a θ 4 ,
= d 2 / n 2 + d 1 / n 1 g , a = d 2 / n 2 3 + d 1 / n 1 3 g , g = L 2 L 1 + E + d 1 d 2 .
( λ ) T ; ( T ) λ 0 ; ( 2 Δ 0 λ T ) λ λ 0 ,
1 2 θ m θ m + θ m cos 2 π λ 0 ( Δ 0 + θ 2 + a θ 4 ) d θ .
δ Δ 0 = 2 ( n 1 1 ) 10 4 tan α 1 in nm
1 2 Δ 0 T = [ ( n 1 ) α + β ] e ,
S ( x ) = I 0 [ 1 + U M V 1 cos ( Φ 0 + 2 π λ 0 x + φ ) ] + I B
S P = [ I 0 + I B ] + U M V 1 I 0 cos ( Φ 0 + 2 π λ 0 x + φ ) ,
J 1 = 1 δ 0 δ S ( x ) d x = I 0 + I B ,
J 2 = 2 δ 0 δ S ( x ) cos ω x d x = U M V 1 I 0 cos ( Φ 0 + φ ) ,
J 3 = 2 δ 0 δ S ( x ) sin ω x d x = U M V 1 I 0 sin ( Φ 0 + φ ) ,
U M V 1 I 0 = J 2 2 + J 3 2 ,
S counts = 10 8 4 π B S Ω T 0 pt T F T M η ,
Δ T T = Δ V 1 V 1 1 | log V 1 | ,

Metrics