Abstract

The kinetics of bleaching of methylene blue or thionine sensitized gelatin plates are investigated with a single-beam exposure experiment. It is found that thionine bleaching can be modeled by a first-order theory; whereas, a higher-order theory is found necessary to explain methylene blue bleaching.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Solano, R. A. Lessard, P. C. Roberge, “Methylene Blue Sensitized Gelatin as a Photosensitive Medium for Conventional and Polarizing Holography,” Appl. Opt. 26, 1989–1997 (1987).
    [CrossRef] [PubMed]
  2. N. Capolla, R. A. Lessard, “Processing of Holograms Recorded in Methylene Blue Sensitized Gelatin,” Appl. Opt. 27, 3008–3012 (1988).
    [CrossRef] [PubMed]
  3. J. C. Newell, L. Solymar, A. A. Ward, “Holograms in Dichromated Gelatin: Real-Time Effects,” Appl. Opt. 24, 4460–4466 (1985).
    [CrossRef] [PubMed]
  4. T. A. Shankoff, “Phase Holograms in Dichromated Gelatin,” Appl. Opt. 7, 2101–2105 (1968).
    [CrossRef] [PubMed]
  5. D. Meyerhofer, “Spatial Resolution of Relief Holograms in Dichromated Gelatin,” Appl. Opt. 10, 416–421 (1971).
    [CrossRef] [PubMed]
  6. D. Meyerhofer, “Phase Holograms in Dichromated Gelatin,” RCA Rev. 33, 110 (1972).
  7. N. Capolla, C. Carre, D. J. Lougnot, R. A. Lessard, “Methylene Blue Sensitized Gelatin: Evidence of Photodemethylation,” Appl. Opt. 28, 4050–4052 (1989).
    [CrossRef]
  8. W. J. Tomlinson, G. D. Aumiller, “Technique for Measuring Refractive Index Changes in Photochromic Materials,” Appl. Opt. 14, 1100–1104 (1975).
    [CrossRef] [PubMed]
  9. M. Kamogawa, S. Katsuta, M. Nahasawa, “Organic Solid Photochromism by Photoreduction Mechanism: Thionine-Reductant System,” J. Appl. Polym. Sci. 27, 1621 (1982).
    [CrossRef]
  10. drnlin, fortran program for nonlinear regression, in International Mathematical & Statistical Library, Houston (1987).

1989 (1)

1988 (1)

1987 (1)

1985 (1)

1982 (1)

M. Kamogawa, S. Katsuta, M. Nahasawa, “Organic Solid Photochromism by Photoreduction Mechanism: Thionine-Reductant System,” J. Appl. Polym. Sci. 27, 1621 (1982).
[CrossRef]

1975 (1)

1972 (1)

D. Meyerhofer, “Phase Holograms in Dichromated Gelatin,” RCA Rev. 33, 110 (1972).

1971 (1)

1968 (1)

Aumiller, G. D.

Capolla, N.

Carre, C.

Kamogawa, M.

M. Kamogawa, S. Katsuta, M. Nahasawa, “Organic Solid Photochromism by Photoreduction Mechanism: Thionine-Reductant System,” J. Appl. Polym. Sci. 27, 1621 (1982).
[CrossRef]

Katsuta, S.

M. Kamogawa, S. Katsuta, M. Nahasawa, “Organic Solid Photochromism by Photoreduction Mechanism: Thionine-Reductant System,” J. Appl. Polym. Sci. 27, 1621 (1982).
[CrossRef]

Lessard, R. A.

Lougnot, D. J.

Meyerhofer, D.

Nahasawa, M.

M. Kamogawa, S. Katsuta, M. Nahasawa, “Organic Solid Photochromism by Photoreduction Mechanism: Thionine-Reductant System,” J. Appl. Polym. Sci. 27, 1621 (1982).
[CrossRef]

Newell, J. C.

Roberge, P. C.

Shankoff, T. A.

Solano, C.

Solymar, L.

Tomlinson, W. J.

Ward, A. A.

Appl. Opt. (7)

J. Appl. Polym. Sci. (1)

M. Kamogawa, S. Katsuta, M. Nahasawa, “Organic Solid Photochromism by Photoreduction Mechanism: Thionine-Reductant System,” J. Appl. Polym. Sci. 27, 1621 (1982).
[CrossRef]

RCA Rev. (1)

D. Meyerhofer, “Phase Holograms in Dichromated Gelatin,” RCA Rev. 33, 110 (1972).

Other (1)

drnlin, fortran program for nonlinear regression, in International Mathematical & Statistical Library, Houston (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption spectra of ThG and MBG solutions.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup for studying the bleaching kinetics of ThG and MBG films.

Fig. 3
Fig. 3

Output beam power vs time for an input power of 1.5 mW on a MBG plate.

Fig. 4
Fig. 4

Output beam power vs time for an input power of 5 mW on a ThG plate.

Fig. 5
Fig. 5

Output beam power vs time for an input power of 1.5 mW on a ThG plate.

Fig. 6
Fig. 6

Output beam power vs time for an input power of 1.5 mW on a MBG plate (n = 1.95).

Tables (1)

Tables Icon

Table I Values of Parameters Used to Model the He–He Single-Beam Experiments

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α ( x , t ) t = C I ( x , t ) [ α f α ( x , t ) ] ,
I ( x , t ) d x = α ( x , t ) cos θ I ( x , t ) ,
α ( x , 0 ) = α i , I ( 0 , t ) = I 0 ,
I ( x , 0 ) = I 0 exp [ α i x cos θ ] ,
Th + h υ 1 Th * 3 Th * .
3 Th * + gelatin intermediate products leuco Th + gelatin 0 x .
MB + h υ 1 MB * 3 MB * .
3 MB * + gelatin intermediate products leuco MB + gelatin 0 x .
MB + + h υ azure B .
α ( x , t ) t = C I n ( x , t ) [ a f α ( x , t ) ] .

Metrics