## Abstract

Measured temperature dependences of the Verdet constants of SiO_{2}, SF-57, and BK-7 are ~10^{−4}/K within 3–20% of Becquerel formula estimates.

© 1991 Optical Society of America

Full Article | PDF Article**Applied Optics**- Vol. 30,
- Issue 10,
- pp. 1176-1178
- (1991)
- •doi: 10.1364/AO.30.001176

Measured temperature dependences of the Verdet constants of SiO_{2}, SF-57, and BK-7 are ~10^{−4}/K within 3–20% of Becquerel formula estimates.

© 1991 Optical Society of America

Full Article | PDF Article- View by:
- Article Order
- |
- Year
- |
- Author
- |
- Publication

- See, for example, G. W. Day, A. H. Rose. “Faraday Effect Sensors: The State of the Art,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 138–150 (1988).

- H. Piller, “Faraday Rotation,” in Semiconductors and Semimetals, Vol. 8, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1972), Chap. 3.

- S. Haussuhl, W. Effgen, “Faraday Effect in Cubic Crystals. Additivity Rule and Phase Transitions,” Z. Kristallogr. 183, 153–174 (1988).

- M. A. Machado Gama, “Faraday Effect in Optical Glass at Low Temperatures,” Opt. Quantum Electron. 7, 335–336 (1975).

[CrossRef] - Z. Ren, Y. Wang, P.-A. Robert, “Faraday Rotation and its Temperature Dependence Measurements in Low-Birefringence Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 1275–1278 (1989).

[CrossRef] -
R. C. Jones, “A New Calculus for the Treatment of Optical Systems,” J. Opt. Soc. Am. 31, 488–493 (1941).

[CrossRef] -
Equation (5) can be derived using Jones calculus and the Jones matrix for a medium having both linear and circular birefringence. The method is illustrated, for example, in A. M. Smith, “Polarization and Magnetooptic Properties of Single-Mode Fiber,” Appl. Opt. 17, 52–56 (1978).

[CrossRef] [PubMed] - Optical Glass, Schott Optical Glass, Inc., York Ave., Duryea, PA 18642.

- D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).

- W. B. Gam, R. S. Caird, C. M. Fowler, D. B. Thomson, “Measurement of Faraday Rotation in Megagauss Fields over the Continuous Visible Spectrum,” Rev. Sci. Instrum. 39, 1313–1317 (1968).

[CrossRef]

Z. Ren, Y. Wang, P.-A. Robert, “Faraday Rotation and its Temperature Dependence Measurements in Low-Birefringence Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 1275–1278 (1989).

[CrossRef]

See, for example, G. W. Day, A. H. Rose. “Faraday Effect Sensors: The State of the Art,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 138–150 (1988).

S. Haussuhl, W. Effgen, “Faraday Effect in Cubic Crystals. Additivity Rule and Phase Transitions,” Z. Kristallogr. 183, 153–174 (1988).

Equation (5) can be derived using Jones calculus and the Jones matrix for a medium having both linear and circular birefringence. The method is illustrated, for example, in A. M. Smith, “Polarization and Magnetooptic Properties of Single-Mode Fiber,” Appl. Opt. 17, 52–56 (1978).

[CrossRef]
[PubMed]

M. A. Machado Gama, “Faraday Effect in Optical Glass at Low Temperatures,” Opt. Quantum Electron. 7, 335–336 (1975).

[CrossRef]

W. B. Gam, R. S. Caird, C. M. Fowler, D. B. Thomson, “Measurement of Faraday Rotation in Megagauss Fields over the Continuous Visible Spectrum,” Rev. Sci. Instrum. 39, 1313–1317 (1968).

[CrossRef]

[CrossRef]

See, for example, G. W. Day, A. H. Rose. “Faraday Effect Sensors: The State of the Art,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 138–150 (1988).

S. Haussuhl, W. Effgen, “Faraday Effect in Cubic Crystals. Additivity Rule and Phase Transitions,” Z. Kristallogr. 183, 153–174 (1988).

[CrossRef]

[CrossRef]

R. C. Jones, “A New Calculus for the Treatment of Optical Systems,” J. Opt. Soc. Am. 31, 488–493 (1941).

[CrossRef]

[CrossRef]

H. Piller, “Faraday Rotation,” in Semiconductors and Semimetals, Vol. 8, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1972), Chap. 3.

[CrossRef]

[CrossRef]

[CrossRef]
[PubMed]

[CrossRef]

[CrossRef]

[CrossRef]
[PubMed]

[CrossRef]

[CrossRef]

[CrossRef]

[CrossRef]

H. Piller, “Faraday Rotation,” in Semiconductors and Semimetals, Vol. 8, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1972), Chap. 3.

Optical Glass, Schott Optical Glass, Inc., York Ave., Duryea, PA 18642.

D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Measurement system used for

Typical data for SF-57 and SiO_{2}; data for BK-7 are similar to that for SiO_{2}.

**Table I** Results for SF-57, SiO_{2}, and BK-7 Glass^{a}

Equations on this page are rendered with MathJax. Learn more.

$$\theta =V{\displaystyle \int B\xb7dh},$$

$$\Delta /\Sigma =\text{sin}\left(2VBL\right),$$

$$\Delta /\Sigma =2VBL.$$

$$\frac{1}{{\left(VL\right)}_{0}}\frac{d\left(VL\right)}{dT}=\frac{1}{{V}_{0}}\frac{dV}{dT}+\alpha ,$$

$$\frac{\Delta}{\Sigma}=2VBL\left[\frac{\text{sin}\sqrt{{\delta}^{2}+{\left(2VBL\right)}^{2}}}{\sqrt{{\delta}^{2}+{\left(2VBL\right)}^{2}}}\right],$$

$${V}_{\text{diam}}=\gamma \frac{e\lambda}{2mc}\left(\frac{dn}{d\lambda}\right),$$

$$\frac{1}{{V}_{0}}\frac{dV}{dT}=\frac{\frac{d}{dT}\left(\frac{dn}{d\lambda}\right)}{\left(\frac{dn}{d\lambda}\right)}=\frac{\frac{d}{d\lambda}\left(\frac{dn}{dT}\right)}{\left(\frac{dn}{d\lambda}\right)}.$$

© Copyright 2016 | The Optical Society. All Rights Reserved