Abstract

Efficient and accurate computation of the scattered intensity pattern by the Mie formulas is now feasible for size parameters up to x = 50,000 at least, which in visual light means spherical drops with diameters up to 6 mm. We present a method for evaluating the Mie coefficients from the ratios between Riccati-Bessel and Neumann functions of successive order. We probe the applicability of the Airy approximation, which we generalize to rainbows of arbitrary p (number of internal reflections = p – 1), by comparing the Mie and Airy intensity patterns. Millimeter size water drops show a match in all details, including the position and intensity of the supernumerary maxima and the polarization. A fairly good match is still seen for drops of 0.1 mm. A small spread in sizes helps to smooth out irrelevant detail. The dark band between the rainbows is used to test more subtle features. We conclude that this band contains not only externally reflected light (p = 0) but also a sizable contribution from the p = 6 and p = 7 rainbows, which shift rapidly with wavelength. The higher the refractive index, the closer both theories agree on the first primary rainbow (p = 2) peak for drop diameters as small as 0.02 mm. This may be useful in supporting experimental work.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription