Abstract

This paper describes and gives some of the results of using a microscope which increases the useful depth of observation of an object in a photograph to many times the focal depth of the lens system being used. The principle of the microscope is that the object is illuminated only on the focal plane while the object is being scanned through that plane. Thus, the out-of-focus parts of the object are always in darkness, and the final photographs show high resolution throughout the depth of scan. The mechanism of scanning is somewhat similar to the Gregory–Donaldson method, whereas the mechanism of illumination is similar to that of the Schmaltz slit. This is the first time that scanning and focal plane illumination have been combined to attain high resolution at great depths. Of course, high-frequency scanning would permit direct observation by eye.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Needham, The Practical Use of the Microscope (Charles C Thomas, Springfield, Ill., 1958), p. 223.
  2. R. L. Gregory, P. E. K. Donaldson, Nature 182, 1434 (1958).
    [CrossRef] [PubMed]
  3. G. Schmaltz, Technesche Oberflashenkunde (Springer, Berlin, 1936).
    [CrossRef]
  4. E. Menzel, Naturwiss. (38) 14, 332 (1951); Optik 14, 151 (1957); J. Opt. Soc. Am. 46, 372 (1956).
    [CrossRef]
  5. M. Francon, Progress in Microscopy (Row Peterson, New York, 1961), pp. 136–142.
  6. Reference 1, p. 421.

1958 (1)

R. L. Gregory, P. E. K. Donaldson, Nature 182, 1434 (1958).
[CrossRef] [PubMed]

1951 (1)

E. Menzel, Naturwiss. (38) 14, 332 (1951); Optik 14, 151 (1957); J. Opt. Soc. Am. 46, 372 (1956).
[CrossRef]

Donaldson, P. E. K.

R. L. Gregory, P. E. K. Donaldson, Nature 182, 1434 (1958).
[CrossRef] [PubMed]

Francon, M.

M. Francon, Progress in Microscopy (Row Peterson, New York, 1961), pp. 136–142.

Gregory, R. L.

R. L. Gregory, P. E. K. Donaldson, Nature 182, 1434 (1958).
[CrossRef] [PubMed]

Menzel, E.

E. Menzel, Naturwiss. (38) 14, 332 (1951); Optik 14, 151 (1957); J. Opt. Soc. Am. 46, 372 (1956).
[CrossRef]

Needham, G. H.

G. H. Needham, The Practical Use of the Microscope (Charles C Thomas, Springfield, Ill., 1958), p. 223.

Schmaltz, G.

G. Schmaltz, Technesche Oberflashenkunde (Springer, Berlin, 1936).
[CrossRef]

Nature (1)

R. L. Gregory, P. E. K. Donaldson, Nature 182, 1434 (1958).
[CrossRef] [PubMed]

Naturwiss. (1)

E. Menzel, Naturwiss. (38) 14, 332 (1951); Optik 14, 151 (1957); J. Opt. Soc. Am. 46, 372 (1956).
[CrossRef]

Other (4)

M. Francon, Progress in Microscopy (Row Peterson, New York, 1961), pp. 136–142.

Reference 1, p. 421.

G. Schmaltz, Technesche Oberflashenkunde (Springer, Berlin, 1936).
[CrossRef]

G. H. Needham, The Practical Use of the Microscope (Charles C Thomas, Springfield, Ill., 1958), p. 223.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A schematic drawing showing the principles of a deep focus microscope. Note that the zone of illumination is thinnest where it crosses the axis of the lens L.

Fig. 2
Fig. 2

The principles of the microscope illustrated on a large dendrite of bismuth. (a) A picture of the usual kind; (b) the same sample illuminated by a beam 3 mm deep, not moving; and (c) illuminated 1 mm deep and mechanically scanned 40 mm.

Fig. 3
Fig. 3

(a) A housefly at 30×; (b) dendritic copper at 200×.

Fig. 4
Fig. 4

(a) An imaginary object in cross section; (b) that portion illuminated shown in heavy lines; (c) that part which is visible as viewed in the direction of the arrows; and (d) the part that is both illuminated and unobstructed.

Tables (1)

Tables Icon

Table I Working Data

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

1 f = 1 p + 1 q
M = q / p ,
h = λ / 2 η sin U .
c = 0.0125 / M
c / D 0 = a / 2 p ,
D 0 = 0.025 p / a M T .
R M O = D M / D 0 .
R M s = D M / D s .
D M = 12.7 / M T .
M T = M 0 M e ( BL ) / 10 .

Metrics