Abstract

A high-intensity interference pattern can be obtained in a shearing interferometer with the use of a visible gas laser and a simple construction. The high intensity of the laser per unit of solid angle gives an interference pattern that is visible in room light. The narrow spectral width of the source allows a simple plane parallel plate to be used to obtain the desired shear.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Bates, Proc. Phys. Soc. (London) 59, 940 (1947).
    [Crossref]
  2. R. L. Drew, Proc. Phys. Soc. (London) B64, 1005 (1951).
  3. D. S. Brown, Proc. Phys. Soc. (London) B67, 232 (1954).
  4. D. S. Brown, J. Sci. Instr. 32, 137 (1955).
    [Crossref]
  5. G. D. Boyd, J. P. Gordon, Bell System Tech. J. 40, 489 (1961).
  6. W. R. Bennett, Optical Masers, Appl. Opt. Suppl. 1 (1962), p. 24.
    [Crossref]

1962 (1)

W. R. Bennett, Optical Masers, Appl. Opt. Suppl. 1 (1962), p. 24.
[Crossref]

1961 (1)

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 40, 489 (1961).

1955 (1)

D. S. Brown, J. Sci. Instr. 32, 137 (1955).
[Crossref]

1954 (1)

D. S. Brown, Proc. Phys. Soc. (London) B67, 232 (1954).

1951 (1)

R. L. Drew, Proc. Phys. Soc. (London) B64, 1005 (1951).

1947 (1)

W. J. Bates, Proc. Phys. Soc. (London) 59, 940 (1947).
[Crossref]

Bates, W. J.

W. J. Bates, Proc. Phys. Soc. (London) 59, 940 (1947).
[Crossref]

Bennett, W. R.

W. R. Bennett, Optical Masers, Appl. Opt. Suppl. 1 (1962), p. 24.
[Crossref]

Boyd, G. D.

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 40, 489 (1961).

Brown, D. S.

D. S. Brown, J. Sci. Instr. 32, 137 (1955).
[Crossref]

D. S. Brown, Proc. Phys. Soc. (London) B67, 232 (1954).

Drew, R. L.

R. L. Drew, Proc. Phys. Soc. (London) B64, 1005 (1951).

Gordon, J. P.

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 40, 489 (1961).

Bell System Tech. J. (1)

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 40, 489 (1961).

J. Sci. Instr. (1)

D. S. Brown, J. Sci. Instr. 32, 137 (1955).
[Crossref]

Optical Masers, Appl. Opt. Suppl. 1 (1)

W. R. Bennett, Optical Masers, Appl. Opt. Suppl. 1 (1962), p. 24.
[Crossref]

Proc. Phys. Soc. (London) (3)

W. J. Bates, Proc. Phys. Soc. (London) 59, 940 (1947).
[Crossref]

R. L. Drew, Proc. Phys. Soc. (London) B64, 1005 (1951).

D. S. Brown, Proc. Phys. Soc. (London) B67, 232 (1954).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram showing the parallel plate used as a lateral shearing interferometer.

Fig. 2
Fig. 2

Lateral shearing interferogram for a nearly perfect plane wavefront.

Fig. 3
Fig. 3

Lateral shearing interferogram for a slightly diverging or converging wavefront.

Fig. 4
Fig. 4

Lateral shearing interferogram for a wavefront having pure primary coma. The direction of shear is in the meridional plane.

Fig. 5
Fig. 5

Lateral shearing interferogram for a wavefront having pure primary coma. The direction of shear is in the sagital plane.

Figs. 6
Figs. 6

(a), (b), and (c) Lateral shearing interferograms for a wavefront having pure primary spherical aberration. The three photographs were taken at different focal settings near the paraxial focus.

Figs. 7
Figs. 7

(a) and (b). Lateral shearing interferograms for a wavefront having primary and secondary spherical aberrations of opposite signs. The two photographs were taken at different focal settings near the paraxial focus.

Fig. 8
Fig. 8

Lateral shearing interferogram for a nearly perfect plane wavefront when a small amount of tilt is introduced in a direction perpendicular to the direction of shear.

Fig. 9
Fig. 9

Lateral shearing interferogram for a slightly converging or diverging wavefront in the presence of a tilt in a direction perpendicular to the direction of shear.

Fig. 10
Fig. 10

Lateral shearing interferogram for a wavefront having a spherical aberration of about λ/4 in the presence of a tilt in a direction perpendicular to the direction of shear.

Figs. 11
Figs. 11

(a) and (b). Lateral shearing interferograms taken with a parallel plate having a fully reflecting coating on the back side and a 30% reflecting coating on the front side. Note the presence of the secondary fringes.

Fig. 12
Fig. 12

Schematic diagram showing how the parallel-plate interferometer is modified to test a large concave spherical mirror.

Metrics