Abstract

The spectral characteristics of arcs operated in several kilotorr of mercury vapor with lower pressures of various metal iodides can be explained on the basis of local thermal equilibrium among all components of the plasma except for the radiation itself. The fraction of atoms excited to an electronic state depends only on the excitation energy of the state and the plasma temperature. Conversely, the plasma temperature depends strongly on excitation energy for those transitions responsible for the principal radiative output. Plasma temperature, excitation energies, and number of radiating atoms can be related quantitatively and can lead to calculated plasma temperatures in satisfactory agreement with experimental determinations of temperature.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Reiling (to be published).
  2. D. A. Larson, H. D. Fraser, N. V. Cushing, M. C. Unglert, IES Conference Paper, Light Sources No. 14 (April1962).
  3. W. Elenbaas, The High Pressure Mercury Vapour Discharge (Interscience, New York, 1951), p. 7.
  4. Reference 3, pp. 95, 96.
  5. F. P. Bundy, H. M. Strong, Physical Measurements in Gas Dynamics and Combustion (Princeton Univ. Press, Princeton, 1954), p. 359; F. P. Bundy, H. M. Strong, J. Appl. Phys. 25, 1531 (1954); S. S. Penner, J. Chem. Phys. 19, 272 (1951).
    [CrossRef]
  6. Reference 3, p. 40.
  7. H. Hentschel, Z. Angew. Phys. 14, 627 (1962).
  8. H. Maecker, Z. Physik 157, 1 (1959).
    [CrossRef]
  9. I. M. Belousova, D. B. Gurevich, Zh. Tekhn. Fiz. 31, 1273 (1961); Soviet Phys.—Tech. Phys. 6, 974 (1962).
  10. T. Wentink, W. G. Planet, J. Opt. Soc. Am. 51, 595 (1961).
    [CrossRef]
  11. W. Elenbaas, Physica IV, 413 (1937).
    [CrossRef]
  12. Reference 3, pp. 41, 42.
  13. Reference 3, p. 9.
  14. Reference 3, p. 39.
  15. C. Kenty, W. J. Karash, Phys. Rev. 60, 66(A) (1941); Phys. Rev. 78, 625 (1950).

1962 (1)

H. Hentschel, Z. Angew. Phys. 14, 627 (1962).

1961 (2)

I. M. Belousova, D. B. Gurevich, Zh. Tekhn. Fiz. 31, 1273 (1961); Soviet Phys.—Tech. Phys. 6, 974 (1962).

T. Wentink, W. G. Planet, J. Opt. Soc. Am. 51, 595 (1961).
[CrossRef]

1959 (1)

H. Maecker, Z. Physik 157, 1 (1959).
[CrossRef]

1941 (1)

C. Kenty, W. J. Karash, Phys. Rev. 60, 66(A) (1941); Phys. Rev. 78, 625 (1950).

1937 (1)

W. Elenbaas, Physica IV, 413 (1937).
[CrossRef]

Belousova, I. M.

I. M. Belousova, D. B. Gurevich, Zh. Tekhn. Fiz. 31, 1273 (1961); Soviet Phys.—Tech. Phys. 6, 974 (1962).

Bundy, F. P.

F. P. Bundy, H. M. Strong, Physical Measurements in Gas Dynamics and Combustion (Princeton Univ. Press, Princeton, 1954), p. 359; F. P. Bundy, H. M. Strong, J. Appl. Phys. 25, 1531 (1954); S. S. Penner, J. Chem. Phys. 19, 272 (1951).
[CrossRef]

Cushing, N. V.

D. A. Larson, H. D. Fraser, N. V. Cushing, M. C. Unglert, IES Conference Paper, Light Sources No. 14 (April1962).

Elenbaas, W.

W. Elenbaas, Physica IV, 413 (1937).
[CrossRef]

W. Elenbaas, The High Pressure Mercury Vapour Discharge (Interscience, New York, 1951), p. 7.

Fraser, H. D.

D. A. Larson, H. D. Fraser, N. V. Cushing, M. C. Unglert, IES Conference Paper, Light Sources No. 14 (April1962).

Gurevich, D. B.

I. M. Belousova, D. B. Gurevich, Zh. Tekhn. Fiz. 31, 1273 (1961); Soviet Phys.—Tech. Phys. 6, 974 (1962).

Hentschel, H.

H. Hentschel, Z. Angew. Phys. 14, 627 (1962).

Karash, W. J.

C. Kenty, W. J. Karash, Phys. Rev. 60, 66(A) (1941); Phys. Rev. 78, 625 (1950).

Kenty, C.

C. Kenty, W. J. Karash, Phys. Rev. 60, 66(A) (1941); Phys. Rev. 78, 625 (1950).

Larson, D. A.

D. A. Larson, H. D. Fraser, N. V. Cushing, M. C. Unglert, IES Conference Paper, Light Sources No. 14 (April1962).

Maecker, H.

H. Maecker, Z. Physik 157, 1 (1959).
[CrossRef]

Planet, W. G.

Reiling, G. H.

G. H. Reiling (to be published).

Strong, H. M.

F. P. Bundy, H. M. Strong, Physical Measurements in Gas Dynamics and Combustion (Princeton Univ. Press, Princeton, 1954), p. 359; F. P. Bundy, H. M. Strong, J. Appl. Phys. 25, 1531 (1954); S. S. Penner, J. Chem. Phys. 19, 272 (1951).
[CrossRef]

Unglert, M. C.

D. A. Larson, H. D. Fraser, N. V. Cushing, M. C. Unglert, IES Conference Paper, Light Sources No. 14 (April1962).

Wentink, T.

J. Opt. Soc. Am. (1)

Phys. Rev. (1)

C. Kenty, W. J. Karash, Phys. Rev. 60, 66(A) (1941); Phys. Rev. 78, 625 (1950).

Physica (1)

W. Elenbaas, Physica IV, 413 (1937).
[CrossRef]

Z. Angew. Phys. (1)

H. Hentschel, Z. Angew. Phys. 14, 627 (1962).

Z. Physik (1)

H. Maecker, Z. Physik 157, 1 (1959).
[CrossRef]

Zh. Tekhn. Fiz. (1)

I. M. Belousova, D. B. Gurevich, Zh. Tekhn. Fiz. 31, 1273 (1961); Soviet Phys.—Tech. Phys. 6, 974 (1962).

Other (9)

Reference 3, pp. 41, 42.

Reference 3, p. 9.

Reference 3, p. 39.

G. H. Reiling (to be published).

D. A. Larson, H. D. Fraser, N. V. Cushing, M. C. Unglert, IES Conference Paper, Light Sources No. 14 (April1962).

W. Elenbaas, The High Pressure Mercury Vapour Discharge (Interscience, New York, 1951), p. 7.

Reference 3, pp. 95, 96.

F. P. Bundy, H. M. Strong, Physical Measurements in Gas Dynamics and Combustion (Princeton Univ. Press, Princeton, 1954), p. 359; F. P. Bundy, H. M. Strong, J. Appl. Phys. 25, 1531 (1954); S. S. Penner, J. Chem. Phys. 19, 272 (1951).
[CrossRef]

Reference 3, p. 40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical system for plasma temperature measurements.

Fig. 2
Fig. 2

Spectrometer scan of two mercury lines: (a) 5461 Å; (b) 5770 Å. Upper envelopes: emission plus transmission. Lower envelopes: emission intensity.

Fig. 3
Fig. 3

Typical recording of the emission and emission plus transmission of the Hg 5770 Å and the Na 5688 Å lines as arc tube temperature is changed.

Fig. 4
Fig. 4

Plasma temperature as measured by mercury 5770 A line as a function of furnace temperature.

Fig. 5
Fig. 5

Intensity of some spectral lines in a typical NaI–Hg arc as a function of the radial position of the arc image focused on the spectrometer entrance slit.

Tables (1)

Tables Icon

Table I Distribution of Radiative Output of Hg and NaI–Hg Arcs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α λ = λ = ( r + 1 R λ ) / r ,
P λ = n 0 A λ g λ g 0 ( h c / λ ) e E / k T .
P Na P Hg 4 × 10 15 × 2 × 10 8 sec 1 × 2.1 eV × e 2.1295 / 0 k 1.5 × 10 19 × 2 × 10 8 sec 1 × 2.25 eV × e 7.7 / 5000 k 4.

Metrics