Abstract

Optical and physical properties of the phosphor 2,2-dihydroxy-1,1 napthaldiazine (“liumogen”) have been investigated. Emission, absorption, and excitation spectra have been measured, as well as dependence of the emission upon the excitation wavelength and the temperature. Methods of sample preparation have been tested. The compound appears to have some notable advantages as a wavelength conversion detector. The material may be sublimed in vacuum without decomposition, and thus may be used in the form of thin transparent films. These films show a reasonable stability. The absorption edge occurs at ~4600 Å; the main emission is in the yellow-green spectral region. The luminescence quantum yield of the phosphor is nearly independent of the excitation wavelength from 4600 Å to at least 900 Å. The efficiency increases by a factor of ~2 upon cooling to 80°K.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Vavilov, Z. Physik 22, 266 (1924); Z. Physik 42, 311 (1927).
    [CrossRef]
  2. E. J. Bowen, J. W. Sawtell, Trans. Faraday Soc. 33, 1425 (1937).
    [CrossRef]
  3. J. F. Hammann, Z. Angew. Physik 10, 187 (1958).
  4. G. Dejardin, R. Schwegler, Rev. opt. 13, 313 (1934).
  5. F. S. Johnson, K. Watanabe, R. Tousey, J. Opt. Soc. Am. 41, 702 (1951); K. Watanabe, E. C. Y. Inn, ibid. 43, 32 (1953).
    [CrossRef]
  6. V. S. Vavilov, J. Chem. Phys. Solids 8, 223 (1959).
    [CrossRef]
  7. V. S. Vavilov, K. I. Britsyn, Opt. Spectry. 8, 452 (1960).
  8. M. I. Epstein, Instr. Exptl. Tech. (USSR) 3, 531 (1961).
  9. K. Hammer, Z. Tech. Phys. 24, 169 (1943).
  10. F. Abeles, J. Phys. Radium 11, 310 (1950).
    [CrossRef]
  11. J. E. Eby, K. Teegarden, D. Dutton, Phys. Rev. 116, 1099 (1959).
    [CrossRef]
  12. A. Gyemant, Z. Physik 26, 223 (1924).
    [CrossRef]
  13. Observed by the present authors and confirmed by recent measurements in our laboratory by R. A. Knapp (to be published).
  14. For example, see G. Baldini, Phys. Rev. 128, 1562 (1962).
    [CrossRef]

1962

For example, see G. Baldini, Phys. Rev. 128, 1562 (1962).
[CrossRef]

1961

M. I. Epstein, Instr. Exptl. Tech. (USSR) 3, 531 (1961).

1960

V. S. Vavilov, K. I. Britsyn, Opt. Spectry. 8, 452 (1960).

1959

J. E. Eby, K. Teegarden, D. Dutton, Phys. Rev. 116, 1099 (1959).
[CrossRef]

V. S. Vavilov, J. Chem. Phys. Solids 8, 223 (1959).
[CrossRef]

1958

J. F. Hammann, Z. Angew. Physik 10, 187 (1958).

1951

1950

F. Abeles, J. Phys. Radium 11, 310 (1950).
[CrossRef]

1943

K. Hammer, Z. Tech. Phys. 24, 169 (1943).

1937

E. J. Bowen, J. W. Sawtell, Trans. Faraday Soc. 33, 1425 (1937).
[CrossRef]

1934

G. Dejardin, R. Schwegler, Rev. opt. 13, 313 (1934).

1924

S. J. Vavilov, Z. Physik 22, 266 (1924); Z. Physik 42, 311 (1927).
[CrossRef]

A. Gyemant, Z. Physik 26, 223 (1924).
[CrossRef]

Abeles, F.

F. Abeles, J. Phys. Radium 11, 310 (1950).
[CrossRef]

Baldini, G.

For example, see G. Baldini, Phys. Rev. 128, 1562 (1962).
[CrossRef]

Bowen, E. J.

E. J. Bowen, J. W. Sawtell, Trans. Faraday Soc. 33, 1425 (1937).
[CrossRef]

Britsyn, K. I.

V. S. Vavilov, K. I. Britsyn, Opt. Spectry. 8, 452 (1960).

Dejardin, G.

G. Dejardin, R. Schwegler, Rev. opt. 13, 313 (1934).

Dutton, D.

J. E. Eby, K. Teegarden, D. Dutton, Phys. Rev. 116, 1099 (1959).
[CrossRef]

Eby, J. E.

J. E. Eby, K. Teegarden, D. Dutton, Phys. Rev. 116, 1099 (1959).
[CrossRef]

Epstein, M. I.

M. I. Epstein, Instr. Exptl. Tech. (USSR) 3, 531 (1961).

Gyemant, A.

A. Gyemant, Z. Physik 26, 223 (1924).
[CrossRef]

Hammann, J. F.

J. F. Hammann, Z. Angew. Physik 10, 187 (1958).

Hammer, K.

K. Hammer, Z. Tech. Phys. 24, 169 (1943).

Johnson, F. S.

Sawtell, J. W.

E. J. Bowen, J. W. Sawtell, Trans. Faraday Soc. 33, 1425 (1937).
[CrossRef]

Schwegler, R.

G. Dejardin, R. Schwegler, Rev. opt. 13, 313 (1934).

Teegarden, K.

J. E. Eby, K. Teegarden, D. Dutton, Phys. Rev. 116, 1099 (1959).
[CrossRef]

Tousey, R.

Vavilov, S. J.

S. J. Vavilov, Z. Physik 22, 266 (1924); Z. Physik 42, 311 (1927).
[CrossRef]

Vavilov, V. S.

V. S. Vavilov, K. I. Britsyn, Opt. Spectry. 8, 452 (1960).

V. S. Vavilov, J. Chem. Phys. Solids 8, 223 (1959).
[CrossRef]

Watanabe, K.

Instr. Exptl. Tech. (USSR)

M. I. Epstein, Instr. Exptl. Tech. (USSR) 3, 531 (1961).

J. Chem. Phys. Solids

V. S. Vavilov, J. Chem. Phys. Solids 8, 223 (1959).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Radium

F. Abeles, J. Phys. Radium 11, 310 (1950).
[CrossRef]

Opt. Spectry.

V. S. Vavilov, K. I. Britsyn, Opt. Spectry. 8, 452 (1960).

Phys. Rev.

J. E. Eby, K. Teegarden, D. Dutton, Phys. Rev. 116, 1099 (1959).
[CrossRef]

For example, see G. Baldini, Phys. Rev. 128, 1562 (1962).
[CrossRef]

Rev. opt.

G. Dejardin, R. Schwegler, Rev. opt. 13, 313 (1934).

Trans. Faraday Soc.

E. J. Bowen, J. W. Sawtell, Trans. Faraday Soc. 33, 1425 (1937).
[CrossRef]

Z. Angew. Physik

J. F. Hammann, Z. Angew. Physik 10, 187 (1958).

Z. Physik

S. J. Vavilov, Z. Physik 22, 266 (1924); Z. Physik 42, 311 (1927).
[CrossRef]

A. Gyemant, Z. Physik 26, 223 (1924).
[CrossRef]

Z. Tech. Phys.

K. Hammer, Z. Tech. Phys. 24, 169 (1943).

Other

Observed by the present authors and confirmed by recent measurements in our laboratory by R. A. Knapp (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the arrangement for measuring excitation spectra. L = light source; C = 13-cycle chopper B & L = Bausch & Lomb grating monochromator; NS = entrance slit; XS = exit slit; M = concave mirror (10 cm F.L.); S = phosphor sample, shown in “position A” (see text); PM = photomultiplier detector of the luminescence; T = radiation thermocouple.

Fig. 2
Fig. 2

Emission spectrum of an evaporated film, in “position A”. Data have been corrected for the spectral response of the detector phototube. (a) at room temperature; (b) at 80°K.

Fig. 3
Fig. 3

Absorption spectrum of an evaporated liumogen film 0.3 μ thick, on a Suprasil substrate. Recorded in a Cary Model 14 spectrophotometer.

Fig. 4
Fig. 4

Excitation spectra of three different liumogen films. η = KI/Vλ is proportional to the luminescence quantum yield per incident quantum. I is the luminescence intensity, V the emf of a reference thermocouple.

Fig. 5
Fig. 5

Excitation spectra of two liumogen films, relative to sodium salicylate. Excitation was obtained from a vacuum monochromator in the region 90 to 250 mμ, and from a Bausch & Lomb grating monochromator in the region 200 to 350 mμ. The curves have been normalized at 230 mμ.

Metrics