Abstract

A detailed analysis of tapered and inhomogeneous dielectric light collectors was worked out for both illumination and solar energy applications. In particular, tapered dielectric guides have been investigated both theoretically and experimentally together with their capability to collect and transmit high fluxes of light energy. Furthermore, GRIN rods are considered as matching devices, to improve the collecting performance of tapered guides.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Welford, Theory of Parabolic Compound Concentrators (Academic, New York, 1979).
  2. D. Kato, “Fused Silica-Core Glass Fibers as a Low Loss Optical Waveguide,” Appl. Phys. Lett. 22, 3–6 (1973).
    [Crossref]
  3. J. M. Cariou, “High Efficieny Dielectric Fibers for Solar Energy Collection,” Sol. Energy 29, 397–404 (1982).
    [Crossref]
  4. D. Kato, “Low Loss Glass Optical Fibers,” J. Appl. Phys. 47, 4523–4529 (1976).
  5. J. J. Wickzer, “Optical Fiber Sensor for Tracking Line-Focus Solar Collectors,” Appl. Opt. 21, 2703–2707 (1982).
    [Crossref]
  6. R. G. Lamont, D. C. Johnson, “Power Transfer in Biconical Single Mode Fibers,” Appl. Opt. 24, 327–334 (1985).
    [Crossref] [PubMed]
  7. L. A. Whitehead, R. A. Nodwell, F. L. Curzon, “New Efficient Light Guide for Interior Illumination,” Appl. Opt. 21, 2755–2757 (1982).
    [Crossref] [PubMed]
  8. F. Reale, P. Vigo, A. Cutolo, “Tapered Optical Fibers for Solar Energy Applications,” in C. G. Granqvist, C. M. Lampert, J. Mason, V. Wittwer, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion, Proc. Soc. Photo-Opt. Instrum. Eng. (1986).
  9. F. Reale, P. Vigo, A. Cutolo, “The Problem of the Losses in the Optimum Design of Dielectric Guides for Energy Transmission,” in C. M. Lampert, S. Holly, Eds., Materials and Optics for Solar Energy Conversion, Proc. Soc. Photo-Opt. Instrum. Eng.692 (1986).
  10. A. Cutolo, I. Rendina, F. Reale, “Coupling Efficiency of Nonuniform Optical Fibers for Solar Energy Applications,” Sol. Energy Mater. 18, 191–200 (1989).
    [Crossref]
  11. T. Ozeki, S. Kawasaki, “Optical Directional Coupler Using Tapered Sections in Multimode Fibers,” Appl. Phys. Lett. 28, 528–530 (1976).
    [Crossref]
  12. A. Cutolo, “Optical Waveguides with Impedance Loaded Walls,” Proc. Inst. Electr. Eng. Part A 129, 121–129 (1982).
  13. A. Cutolo, S. Solimeno, “Minifrared Metallic Guides with Dielectric Coated Walls,” Opt. Comm. 43, 323–328 (1982).
    [Crossref]
  14. M. Brenci, R. Falciai, M. Mazzoni, A. M. Scheggi, “Variable Section Optical-Fiber Delivery System of High Power Laser Radiation for Surgical Use,” Appl. Opt. 22, 373–375 (1983).
    [Crossref] [PubMed]
  15. A. M. Scheggi, R. Falciai, M. Brenci, “Radiation Characteristics of Tapered Slab Waveguides,” J. Opt. Soc. Am. 73, 119–121 (1983).
    [Crossref]
  16. B. K. Garside, T. K. Lim, J. P. Marton, “Ray Trajectories in Optical Fiber Tapered Sections,” Appl. Opt. 17, 3670–3674 (1978).
    [Crossref] [PubMed]
  17. C. T. Chang, D. C. Auth, “Radiation Characteristics of a Tapered Optical Fiber,” J. Opt. Soc. Am. 68, 1191–1195 (1978).
    [Crossref]
  18. F. Martinez, G. Wylangowski, G. D. Hussey, F. P. Payne, “Practical Single Mode Fibre Horn Beam Expander,” Electron. Lett. 24, 14–15 (1988).
    [Crossref]
  19. D. Marcuse, “Mode Conversion in Optical Fibers with Monotonically Increasing Core Radius,” J. Lightwave Technol. LT-5, 125–133 (1987).
    [Crossref]
  20. S. W. Lee, “Ray Theory of Diffraction by Open-Ended Waveguides: I. Theory,” J. Math. Phys. 11, 2830–2841 (1970).
    [Crossref]
  21. S. W. Lee, “Ray Theory of Diffraction by an Open-Ended Waveguide: II. Applications,” J. Math. Phys. 13, 656–664 (1972).
    [Crossref]
  22. L. A. Weinstein, The Theory of Diffraction and the Factorization Method (Golem Press, Colorado, 1969).
  23. D. E. Williamson, “Cone Channell Condenser Optics,” J. Opt. Soc. Am. 42, 712–719 (1952).
    [Crossref]
  24. A. Cutolo, D. Curtotti, M. Pirro, I. Rendina, F. Reale, “High Efficiency Collectors for Solar Energy Applications: Analysis and Preliminary Results,” in C. G. Granqvist, C. M. Lampert, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, Proc. Soc. Photo-Opt. Instrum. Eng. (1988).
  25. G. Guerra, C. Carfagna, A. Cutolo, U. Mandara, S. Solimeno, G. Moschetto, “Additives in Transparent Polymer Glasses: Concentration Profiles Obtained by Solvent Diffusion Techniques,” J. Appl. Pol. Sci. 29, 2271–2279 (1984).
    [Crossref]
  26. L. Carlomusto, A. Cutolo, I. Rendina, F. Reale, “Light Concentrators, with Nonuniform Refractive Index,” in Proceedings, Nato Advanced Study Institute—Energy Storage Systems: Fundamentals and Applications, 27 June–8 July, 1988, Izmir, Turkey (Ozgun Printing Ind, Ankara, Turkey, 1988).
  27. S. Solimeno, B. Crosignani, P. Di Porto, Guiding Diffraction and Confinement of Optical Radiation (Academic, New York, 1986).
  28. A. Cutolo, I. Rendina, L. Carlomusto, F. Reale, “An Investigation on Planar Dielectric Light Collectors for Illumination and Solar Energy Applications,” Opt. Laser Technol. 21, 193–197 (1989).
    [Crossref]

1989 (2)

A. Cutolo, I. Rendina, F. Reale, “Coupling Efficiency of Nonuniform Optical Fibers for Solar Energy Applications,” Sol. Energy Mater. 18, 191–200 (1989).
[Crossref]

A. Cutolo, I. Rendina, L. Carlomusto, F. Reale, “An Investigation on Planar Dielectric Light Collectors for Illumination and Solar Energy Applications,” Opt. Laser Technol. 21, 193–197 (1989).
[Crossref]

1988 (1)

F. Martinez, G. Wylangowski, G. D. Hussey, F. P. Payne, “Practical Single Mode Fibre Horn Beam Expander,” Electron. Lett. 24, 14–15 (1988).
[Crossref]

1987 (1)

D. Marcuse, “Mode Conversion in Optical Fibers with Monotonically Increasing Core Radius,” J. Lightwave Technol. LT-5, 125–133 (1987).
[Crossref]

1985 (1)

1984 (1)

G. Guerra, C. Carfagna, A. Cutolo, U. Mandara, S. Solimeno, G. Moschetto, “Additives in Transparent Polymer Glasses: Concentration Profiles Obtained by Solvent Diffusion Techniques,” J. Appl. Pol. Sci. 29, 2271–2279 (1984).
[Crossref]

1983 (2)

1982 (5)

A. Cutolo, “Optical Waveguides with Impedance Loaded Walls,” Proc. Inst. Electr. Eng. Part A 129, 121–129 (1982).

A. Cutolo, S. Solimeno, “Minifrared Metallic Guides with Dielectric Coated Walls,” Opt. Comm. 43, 323–328 (1982).
[Crossref]

L. A. Whitehead, R. A. Nodwell, F. L. Curzon, “New Efficient Light Guide for Interior Illumination,” Appl. Opt. 21, 2755–2757 (1982).
[Crossref] [PubMed]

J. M. Cariou, “High Efficieny Dielectric Fibers for Solar Energy Collection,” Sol. Energy 29, 397–404 (1982).
[Crossref]

J. J. Wickzer, “Optical Fiber Sensor for Tracking Line-Focus Solar Collectors,” Appl. Opt. 21, 2703–2707 (1982).
[Crossref]

1978 (2)

1976 (2)

D. Kato, “Low Loss Glass Optical Fibers,” J. Appl. Phys. 47, 4523–4529 (1976).

T. Ozeki, S. Kawasaki, “Optical Directional Coupler Using Tapered Sections in Multimode Fibers,” Appl. Phys. Lett. 28, 528–530 (1976).
[Crossref]

1973 (1)

D. Kato, “Fused Silica-Core Glass Fibers as a Low Loss Optical Waveguide,” Appl. Phys. Lett. 22, 3–6 (1973).
[Crossref]

1972 (1)

S. W. Lee, “Ray Theory of Diffraction by an Open-Ended Waveguide: II. Applications,” J. Math. Phys. 13, 656–664 (1972).
[Crossref]

1970 (1)

S. W. Lee, “Ray Theory of Diffraction by Open-Ended Waveguides: I. Theory,” J. Math. Phys. 11, 2830–2841 (1970).
[Crossref]

1952 (1)

Auth, D. C.

Brenci, M.

Carfagna, C.

G. Guerra, C. Carfagna, A. Cutolo, U. Mandara, S. Solimeno, G. Moschetto, “Additives in Transparent Polymer Glasses: Concentration Profiles Obtained by Solvent Diffusion Techniques,” J. Appl. Pol. Sci. 29, 2271–2279 (1984).
[Crossref]

Cariou, J. M.

J. M. Cariou, “High Efficieny Dielectric Fibers for Solar Energy Collection,” Sol. Energy 29, 397–404 (1982).
[Crossref]

Carlomusto, L.

A. Cutolo, I. Rendina, L. Carlomusto, F. Reale, “An Investigation on Planar Dielectric Light Collectors for Illumination and Solar Energy Applications,” Opt. Laser Technol. 21, 193–197 (1989).
[Crossref]

L. Carlomusto, A. Cutolo, I. Rendina, F. Reale, “Light Concentrators, with Nonuniform Refractive Index,” in Proceedings, Nato Advanced Study Institute—Energy Storage Systems: Fundamentals and Applications, 27 June–8 July, 1988, Izmir, Turkey (Ozgun Printing Ind, Ankara, Turkey, 1988).

Chang, C. T.

Crosignani, B.

S. Solimeno, B. Crosignani, P. Di Porto, Guiding Diffraction and Confinement of Optical Radiation (Academic, New York, 1986).

Curtotti, D.

A. Cutolo, D. Curtotti, M. Pirro, I. Rendina, F. Reale, “High Efficiency Collectors for Solar Energy Applications: Analysis and Preliminary Results,” in C. G. Granqvist, C. M. Lampert, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

Curzon, F. L.

Cutolo, A.

A. Cutolo, I. Rendina, F. Reale, “Coupling Efficiency of Nonuniform Optical Fibers for Solar Energy Applications,” Sol. Energy Mater. 18, 191–200 (1989).
[Crossref]

A. Cutolo, I. Rendina, L. Carlomusto, F. Reale, “An Investigation on Planar Dielectric Light Collectors for Illumination and Solar Energy Applications,” Opt. Laser Technol. 21, 193–197 (1989).
[Crossref]

G. Guerra, C. Carfagna, A. Cutolo, U. Mandara, S. Solimeno, G. Moschetto, “Additives in Transparent Polymer Glasses: Concentration Profiles Obtained by Solvent Diffusion Techniques,” J. Appl. Pol. Sci. 29, 2271–2279 (1984).
[Crossref]

A. Cutolo, “Optical Waveguides with Impedance Loaded Walls,” Proc. Inst. Electr. Eng. Part A 129, 121–129 (1982).

A. Cutolo, S. Solimeno, “Minifrared Metallic Guides with Dielectric Coated Walls,” Opt. Comm. 43, 323–328 (1982).
[Crossref]

F. Reale, P. Vigo, A. Cutolo, “The Problem of the Losses in the Optimum Design of Dielectric Guides for Energy Transmission,” in C. M. Lampert, S. Holly, Eds., Materials and Optics for Solar Energy Conversion, Proc. Soc. Photo-Opt. Instrum. Eng.692 (1986).

F. Reale, P. Vigo, A. Cutolo, “Tapered Optical Fibers for Solar Energy Applications,” in C. G. Granqvist, C. M. Lampert, J. Mason, V. Wittwer, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion, Proc. Soc. Photo-Opt. Instrum. Eng. (1986).

A. Cutolo, D. Curtotti, M. Pirro, I. Rendina, F. Reale, “High Efficiency Collectors for Solar Energy Applications: Analysis and Preliminary Results,” in C. G. Granqvist, C. M. Lampert, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

L. Carlomusto, A. Cutolo, I. Rendina, F. Reale, “Light Concentrators, with Nonuniform Refractive Index,” in Proceedings, Nato Advanced Study Institute—Energy Storage Systems: Fundamentals and Applications, 27 June–8 July, 1988, Izmir, Turkey (Ozgun Printing Ind, Ankara, Turkey, 1988).

Di Porto, P.

S. Solimeno, B. Crosignani, P. Di Porto, Guiding Diffraction and Confinement of Optical Radiation (Academic, New York, 1986).

Falciai, R.

Garside, B. K.

Guerra, G.

G. Guerra, C. Carfagna, A. Cutolo, U. Mandara, S. Solimeno, G. Moschetto, “Additives in Transparent Polymer Glasses: Concentration Profiles Obtained by Solvent Diffusion Techniques,” J. Appl. Pol. Sci. 29, 2271–2279 (1984).
[Crossref]

Hussey, G. D.

F. Martinez, G. Wylangowski, G. D. Hussey, F. P. Payne, “Practical Single Mode Fibre Horn Beam Expander,” Electron. Lett. 24, 14–15 (1988).
[Crossref]

Johnson, D. C.

Kato, D.

D. Kato, “Low Loss Glass Optical Fibers,” J. Appl. Phys. 47, 4523–4529 (1976).

D. Kato, “Fused Silica-Core Glass Fibers as a Low Loss Optical Waveguide,” Appl. Phys. Lett. 22, 3–6 (1973).
[Crossref]

Kawasaki, S.

T. Ozeki, S. Kawasaki, “Optical Directional Coupler Using Tapered Sections in Multimode Fibers,” Appl. Phys. Lett. 28, 528–530 (1976).
[Crossref]

Lamont, R. G.

Lee, S. W.

S. W. Lee, “Ray Theory of Diffraction by an Open-Ended Waveguide: II. Applications,” J. Math. Phys. 13, 656–664 (1972).
[Crossref]

S. W. Lee, “Ray Theory of Diffraction by Open-Ended Waveguides: I. Theory,” J. Math. Phys. 11, 2830–2841 (1970).
[Crossref]

Lim, T. K.

Mandara, U.

G. Guerra, C. Carfagna, A. Cutolo, U. Mandara, S. Solimeno, G. Moschetto, “Additives in Transparent Polymer Glasses: Concentration Profiles Obtained by Solvent Diffusion Techniques,” J. Appl. Pol. Sci. 29, 2271–2279 (1984).
[Crossref]

Marcuse, D.

D. Marcuse, “Mode Conversion in Optical Fibers with Monotonically Increasing Core Radius,” J. Lightwave Technol. LT-5, 125–133 (1987).
[Crossref]

Martinez, F.

F. Martinez, G. Wylangowski, G. D. Hussey, F. P. Payne, “Practical Single Mode Fibre Horn Beam Expander,” Electron. Lett. 24, 14–15 (1988).
[Crossref]

Marton, J. P.

Mazzoni, M.

Moschetto, G.

G. Guerra, C. Carfagna, A. Cutolo, U. Mandara, S. Solimeno, G. Moschetto, “Additives in Transparent Polymer Glasses: Concentration Profiles Obtained by Solvent Diffusion Techniques,” J. Appl. Pol. Sci. 29, 2271–2279 (1984).
[Crossref]

Nodwell, R. A.

Ozeki, T.

T. Ozeki, S. Kawasaki, “Optical Directional Coupler Using Tapered Sections in Multimode Fibers,” Appl. Phys. Lett. 28, 528–530 (1976).
[Crossref]

Payne, F. P.

F. Martinez, G. Wylangowski, G. D. Hussey, F. P. Payne, “Practical Single Mode Fibre Horn Beam Expander,” Electron. Lett. 24, 14–15 (1988).
[Crossref]

Pirro, M.

A. Cutolo, D. Curtotti, M. Pirro, I. Rendina, F. Reale, “High Efficiency Collectors for Solar Energy Applications: Analysis and Preliminary Results,” in C. G. Granqvist, C. M. Lampert, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

Reale, F.

A. Cutolo, I. Rendina, L. Carlomusto, F. Reale, “An Investigation on Planar Dielectric Light Collectors for Illumination and Solar Energy Applications,” Opt. Laser Technol. 21, 193–197 (1989).
[Crossref]

A. Cutolo, I. Rendina, F. Reale, “Coupling Efficiency of Nonuniform Optical Fibers for Solar Energy Applications,” Sol. Energy Mater. 18, 191–200 (1989).
[Crossref]

F. Reale, P. Vigo, A. Cutolo, “The Problem of the Losses in the Optimum Design of Dielectric Guides for Energy Transmission,” in C. M. Lampert, S. Holly, Eds., Materials and Optics for Solar Energy Conversion, Proc. Soc. Photo-Opt. Instrum. Eng.692 (1986).

F. Reale, P. Vigo, A. Cutolo, “Tapered Optical Fibers for Solar Energy Applications,” in C. G. Granqvist, C. M. Lampert, J. Mason, V. Wittwer, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion, Proc. Soc. Photo-Opt. Instrum. Eng. (1986).

L. Carlomusto, A. Cutolo, I. Rendina, F. Reale, “Light Concentrators, with Nonuniform Refractive Index,” in Proceedings, Nato Advanced Study Institute—Energy Storage Systems: Fundamentals and Applications, 27 June–8 July, 1988, Izmir, Turkey (Ozgun Printing Ind, Ankara, Turkey, 1988).

A. Cutolo, D. Curtotti, M. Pirro, I. Rendina, F. Reale, “High Efficiency Collectors for Solar Energy Applications: Analysis and Preliminary Results,” in C. G. Granqvist, C. M. Lampert, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

Rendina, I.

A. Cutolo, I. Rendina, L. Carlomusto, F. Reale, “An Investigation on Planar Dielectric Light Collectors for Illumination and Solar Energy Applications,” Opt. Laser Technol. 21, 193–197 (1989).
[Crossref]

A. Cutolo, I. Rendina, F. Reale, “Coupling Efficiency of Nonuniform Optical Fibers for Solar Energy Applications,” Sol. Energy Mater. 18, 191–200 (1989).
[Crossref]

L. Carlomusto, A. Cutolo, I. Rendina, F. Reale, “Light Concentrators, with Nonuniform Refractive Index,” in Proceedings, Nato Advanced Study Institute—Energy Storage Systems: Fundamentals and Applications, 27 June–8 July, 1988, Izmir, Turkey (Ozgun Printing Ind, Ankara, Turkey, 1988).

A. Cutolo, D. Curtotti, M. Pirro, I. Rendina, F. Reale, “High Efficiency Collectors for Solar Energy Applications: Analysis and Preliminary Results,” in C. G. Granqvist, C. M. Lampert, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

Scheggi, A. M.

Solimeno, S.

G. Guerra, C. Carfagna, A. Cutolo, U. Mandara, S. Solimeno, G. Moschetto, “Additives in Transparent Polymer Glasses: Concentration Profiles Obtained by Solvent Diffusion Techniques,” J. Appl. Pol. Sci. 29, 2271–2279 (1984).
[Crossref]

A. Cutolo, S. Solimeno, “Minifrared Metallic Guides with Dielectric Coated Walls,” Opt. Comm. 43, 323–328 (1982).
[Crossref]

S. Solimeno, B. Crosignani, P. Di Porto, Guiding Diffraction and Confinement of Optical Radiation (Academic, New York, 1986).

Vigo, P.

F. Reale, P. Vigo, A. Cutolo, “Tapered Optical Fibers for Solar Energy Applications,” in C. G. Granqvist, C. M. Lampert, J. Mason, V. Wittwer, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion, Proc. Soc. Photo-Opt. Instrum. Eng. (1986).

F. Reale, P. Vigo, A. Cutolo, “The Problem of the Losses in the Optimum Design of Dielectric Guides for Energy Transmission,” in C. M. Lampert, S. Holly, Eds., Materials and Optics for Solar Energy Conversion, Proc. Soc. Photo-Opt. Instrum. Eng.692 (1986).

Weinstein, L. A.

L. A. Weinstein, The Theory of Diffraction and the Factorization Method (Golem Press, Colorado, 1969).

Welford, R.

R. Welford, Theory of Parabolic Compound Concentrators (Academic, New York, 1979).

Whitehead, L. A.

Wickzer, J. J.

Williamson, D. E.

Wylangowski, G.

F. Martinez, G. Wylangowski, G. D. Hussey, F. P. Payne, “Practical Single Mode Fibre Horn Beam Expander,” Electron. Lett. 24, 14–15 (1988).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (2)

T. Ozeki, S. Kawasaki, “Optical Directional Coupler Using Tapered Sections in Multimode Fibers,” Appl. Phys. Lett. 28, 528–530 (1976).
[Crossref]

D. Kato, “Fused Silica-Core Glass Fibers as a Low Loss Optical Waveguide,” Appl. Phys. Lett. 22, 3–6 (1973).
[Crossref]

Electron. Lett. (1)

F. Martinez, G. Wylangowski, G. D. Hussey, F. P. Payne, “Practical Single Mode Fibre Horn Beam Expander,” Electron. Lett. 24, 14–15 (1988).
[Crossref]

J. Appl. Phys. (1)

D. Kato, “Low Loss Glass Optical Fibers,” J. Appl. Phys. 47, 4523–4529 (1976).

J. Appl. Pol. Sci. (1)

G. Guerra, C. Carfagna, A. Cutolo, U. Mandara, S. Solimeno, G. Moschetto, “Additives in Transparent Polymer Glasses: Concentration Profiles Obtained by Solvent Diffusion Techniques,” J. Appl. Pol. Sci. 29, 2271–2279 (1984).
[Crossref]

J. Lightwave Technol. (1)

D. Marcuse, “Mode Conversion in Optical Fibers with Monotonically Increasing Core Radius,” J. Lightwave Technol. LT-5, 125–133 (1987).
[Crossref]

J. Math. Phys. (2)

S. W. Lee, “Ray Theory of Diffraction by Open-Ended Waveguides: I. Theory,” J. Math. Phys. 11, 2830–2841 (1970).
[Crossref]

S. W. Lee, “Ray Theory of Diffraction by an Open-Ended Waveguide: II. Applications,” J. Math. Phys. 13, 656–664 (1972).
[Crossref]

J. Opt. Soc. Am. (3)

Opt. Comm. (1)

A. Cutolo, S. Solimeno, “Minifrared Metallic Guides with Dielectric Coated Walls,” Opt. Comm. 43, 323–328 (1982).
[Crossref]

Opt. Laser Technol. (1)

A. Cutolo, I. Rendina, L. Carlomusto, F. Reale, “An Investigation on Planar Dielectric Light Collectors for Illumination and Solar Energy Applications,” Opt. Laser Technol. 21, 193–197 (1989).
[Crossref]

Proc. Inst. Electr. Eng. Part A (1)

A. Cutolo, “Optical Waveguides with Impedance Loaded Walls,” Proc. Inst. Electr. Eng. Part A 129, 121–129 (1982).

Sol. Energy (1)

J. M. Cariou, “High Efficieny Dielectric Fibers for Solar Energy Collection,” Sol. Energy 29, 397–404 (1982).
[Crossref]

Sol. Energy Mater. (1)

A. Cutolo, I. Rendina, F. Reale, “Coupling Efficiency of Nonuniform Optical Fibers for Solar Energy Applications,” Sol. Energy Mater. 18, 191–200 (1989).
[Crossref]

Other (7)

R. Welford, Theory of Parabolic Compound Concentrators (Academic, New York, 1979).

F. Reale, P. Vigo, A. Cutolo, “Tapered Optical Fibers for Solar Energy Applications,” in C. G. Granqvist, C. M. Lampert, J. Mason, V. Wittwer, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion, Proc. Soc. Photo-Opt. Instrum. Eng. (1986).

F. Reale, P. Vigo, A. Cutolo, “The Problem of the Losses in the Optimum Design of Dielectric Guides for Energy Transmission,” in C. M. Lampert, S. Holly, Eds., Materials and Optics for Solar Energy Conversion, Proc. Soc. Photo-Opt. Instrum. Eng.692 (1986).

A. Cutolo, D. Curtotti, M. Pirro, I. Rendina, F. Reale, “High Efficiency Collectors for Solar Energy Applications: Analysis and Preliminary Results,” in C. G. Granqvist, C. M. Lampert, Eds., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII, Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

L. Carlomusto, A. Cutolo, I. Rendina, F. Reale, “Light Concentrators, with Nonuniform Refractive Index,” in Proceedings, Nato Advanced Study Institute—Energy Storage Systems: Fundamentals and Applications, 27 June–8 July, 1988, Izmir, Turkey (Ozgun Printing Ind, Ankara, Turkey, 1988).

S. Solimeno, B. Crosignani, P. Di Porto, Guiding Diffraction and Confinement of Optical Radiation (Academic, New York, 1986).

L. A. Weinstein, The Theory of Diffraction and the Factorization Method (Golem Press, Colorado, 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Absorption losses of a typical commercial fiber.

Fig. 2
Fig. 2

Schematic of an optical fiber with a linearly tapered input section; Ψ is the external incident angle and Ψ is the propagation direction of the incoming beam after being refracted by the input surface. The collecting properties can be completely described in terms of the two parameters S = a1/a2 and T = L/a2.

Fig. 3
Fig. 3

Coupling efficiencies η c , η r , and η b plotted vs the external incidence angle Ψ for different values of tapering parameters S and T (see Fig. 1).

Fig. 4
Fig. 4

Normalized power P o /2a2I o (see Eq. 2) collected at the end of the tapered section as a function of incidence angle Ψ (see Fig. 2) and for different values of tapering parameters S and T. We observe that P o /2a2I o = 1 for a nontapered guide.

Fig. 5
Fig. 5

Plot of Tmin [see Eq. (4)] vs S for different values of m = tan(Ψ).

Fig. 6
Fig. 6

Geometric construction of the parabolic profiles: (a) inside turned concavity (V ≥ 1); and (b) outside turned concavity outside (V ≤ 1). A is the focus-vertex distance.

Fig. 7
Fig. 7

Coupling efficiency η c as a function of external incidence angle Ψ for some different values of S = a1/a2, T = L/a2 and of the parabolic parameters V; (a) parabolic profiles with outside turned concavity and (b) inside turned concavity. Continuous lines refer to linear profiles.

Fig. 8
Fig. 8

Absorption spectrum of the Plexiglas.

Fig. 9
Fig. 9

Schematic of the experimental apparatus.

Fig. 10
Fig. 10

Normalized power P/P f measured at the output end of different tapered collectors.

Fig. 11
Fig. 11

Schematic of a tapered dielectric guide with a GRIN rod in front of it as a matching device improving the collecting properties.

Fig. 12
Fig. 12

Schematic of a planar dielectric collector with a nonuniform profile of the refractive index. On the right hand side we show the 2-D geometry referred to in the analysis.

Fig. 13
Fig. 13

Efficiency parameter E vs incidence angle Θ for different values of b (I. b = 0.05; II. b = 0.1; III. b = 0.5) and N x ,N y .

Fig. 14
Fig. 14

Efficiency parameter E vs incidence angles Θ for different values of N x , N y , and b.

Fig. 15
Fig. 15

Concentration ratio C vs length b for different values of N x ,N y and for Θ ≈ 50°.

Fig. 16
Fig. 16

Concentration ratio C vs length b for N x = 0.5, N y = 0 and Θ ≈ 50°.

Fig. 17
Fig. 17

Williamson construction.

Tables (1)

Tables Icon

Table I Relative Efficiencies η1,η2,…, η9 Listed for Different Values of S T and Ψa

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

η c + η r + η b = 1 ,
C c = S η c t ( Ψ ) cos ( Ψ ) C r = S η r t ( Ψ ) cos ( Ψ ) ,
T 2 + ( S - 1 ) 2 ( S - 1 ) 2 ( m 2 + 1 ) - S - 2 m T S 2 S - 1 - m 2 S 2 T 2 ( S - 1 ) 2 0 ,
T T min = ( S - 1 ) × m 2 S 2 + [ m 2 S 4 + ( S - m 2 - 1 ) ( m 2 + 1 - m 2 S 2 ) ] 1 / 2 m 2 + 1 - m 2 S 2 .
V = 8 T ( S - 1 ) 2 × A ,
α r = 0             for cos ( Φ ) > 1 / n
α r = tan ( Φ ) 4 a 2 [ 2 - tan 2 ( Φ o - Φ ) tan 2 ( Φ o - Φ ) - cos 2 ( Φ o - Φ ) cos 2 ( Φ o - Φ ) ]             for cos ( Φ ) < 1 / n ,
α a = α / cos ( Φ ) ,
t ( ψ ) = sin ( 2 ψ ) sin ( 2 ϕ ) 2 sin 2 ( ψ + ϕ ) × 1 + cos 2 ( ψ - ϕ ) cos 2 ( ψ - ϕ ) ,
n ( r ) = n 0 ( 1 - r 2 r o 2 ) ,
X o = X i cos ( 2 Z r o ) + r o n o 2 sin ( 2 Z r o ) tan θ i tan θ o = n o 2 r o X i sin ( 2 Z r o ) + 1 n o tan θ i cos ( 2 Z r o ) ,
tan θ i = x i b ,
x o = x i [ cos ( d 2 r o ) + r o n o b 2 sin ( d 2 r o ) ] tan θ o = x i n o [ 2 r o sin ( d 2 r o ) + 1 b cos ( d 2 r o ) ] ,
x i = x i tan θ i = tan Ψ .
tan ( 2 d min r o ) = n o 2 x i 2 tan Ψ · r o = q ,
x o = x i ( q 2 + 1 ) + r o n o 2 × q ( q 2 + 1 ) tan Ψ tan θ o = n o 2 r o x i q ( q 2 + 1 ) + tan Ψ n o 1 ( q 2 + 1 ) ,
x o r o n o 2 tan Ψ + x i q tan θ o n o 2 r o x i + tan Ψ n o q .
n ˙ ( x , y ) y ˙ ( x ) + n ( x , y ) y ¨ ( x ) [ 1 + y ˙ 2 ( x ) ] - n ( x , y ) y = 0 ,
y ( x 0 ) = 0 y ˙ ( x 0 ) = tan Ψ = m ,
y ( x ) = - x o x [ A n 2 ( x ) - 1 ] - 1 / 2 d x ,
y ( x ) = - x o x [ B n 2 ( y ) - 1 ] 1 / 2 d x ,
n ( x , y ) = N 0 + N x x + N y y ,
E = power collected on the short side power incident on the long side .
C = ( a / b ) E ,

Metrics