Abstract

Blue wavelength excitation is usually preferred for analytical applications of Raman spectroscopy because of the λ−4 dependency of the Raman signal intensity on excitation wavelength. However, for remote Raman measurements using long optical fibers, the transmission spectrum of the fiber should be considered in determining the optimal excitation wavelength. In this note, a quick, approximate approach is developed to determine the optimal excitation wavelength for Raman spectroscopy over optical fibers.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Angel, “Development of Fiber Optic Sensors for Temperature Measurement and Chemical Analysis in Geothermal Wells,” Geothermal Resources Council, Transactions 11, 155–157 (1987).
  2. S. M. Angel, “Optrodes: Chemically Selective Fiber-Optic Sensors,” Spectrosc. 2, 38–47 (1986).
  3. F. P. Milanovich, D. G. Garvis, S. M. Angel, “Remote Detection of Organochlorides With a Fiber Optic Based Sensor,” Anal. Instrum. 15, 137–147 (1986).
    [CrossRef]
  4. S. M. Angel, M. L. Myrick, “Near-Infrared Surface-Enhanced Raman Spectroscopy Using a Diode Laser,” Anal. Chem. 61, 1648–1651 (1989).
    [CrossRef]

1989 (1)

S. M. Angel, M. L. Myrick, “Near-Infrared Surface-Enhanced Raman Spectroscopy Using a Diode Laser,” Anal. Chem. 61, 1648–1651 (1989).
[CrossRef]

1987 (1)

S. M. Angel, “Development of Fiber Optic Sensors for Temperature Measurement and Chemical Analysis in Geothermal Wells,” Geothermal Resources Council, Transactions 11, 155–157 (1987).

1986 (2)

S. M. Angel, “Optrodes: Chemically Selective Fiber-Optic Sensors,” Spectrosc. 2, 38–47 (1986).

F. P. Milanovich, D. G. Garvis, S. M. Angel, “Remote Detection of Organochlorides With a Fiber Optic Based Sensor,” Anal. Instrum. 15, 137–147 (1986).
[CrossRef]

Angel, S. M.

S. M. Angel, M. L. Myrick, “Near-Infrared Surface-Enhanced Raman Spectroscopy Using a Diode Laser,” Anal. Chem. 61, 1648–1651 (1989).
[CrossRef]

S. M. Angel, “Development of Fiber Optic Sensors for Temperature Measurement and Chemical Analysis in Geothermal Wells,” Geothermal Resources Council, Transactions 11, 155–157 (1987).

F. P. Milanovich, D. G. Garvis, S. M. Angel, “Remote Detection of Organochlorides With a Fiber Optic Based Sensor,” Anal. Instrum. 15, 137–147 (1986).
[CrossRef]

S. M. Angel, “Optrodes: Chemically Selective Fiber-Optic Sensors,” Spectrosc. 2, 38–47 (1986).

Garvis, D. G.

F. P. Milanovich, D. G. Garvis, S. M. Angel, “Remote Detection of Organochlorides With a Fiber Optic Based Sensor,” Anal. Instrum. 15, 137–147 (1986).
[CrossRef]

Milanovich, F. P.

F. P. Milanovich, D. G. Garvis, S. M. Angel, “Remote Detection of Organochlorides With a Fiber Optic Based Sensor,” Anal. Instrum. 15, 137–147 (1986).
[CrossRef]

Myrick, M. L.

S. M. Angel, M. L. Myrick, “Near-Infrared Surface-Enhanced Raman Spectroscopy Using a Diode Laser,” Anal. Chem. 61, 1648–1651 (1989).
[CrossRef]

Anal. Chem. (1)

S. M. Angel, M. L. Myrick, “Near-Infrared Surface-Enhanced Raman Spectroscopy Using a Diode Laser,” Anal. Chem. 61, 1648–1651 (1989).
[CrossRef]

Anal. Instrum. (1)

F. P. Milanovich, D. G. Garvis, S. M. Angel, “Remote Detection of Organochlorides With a Fiber Optic Based Sensor,” Anal. Instrum. 15, 137–147 (1986).
[CrossRef]

Geothermal Resources Council, Transactions (1)

S. M. Angel, “Development of Fiber Optic Sensors for Temperature Measurement and Chemical Analysis in Geothermal Wells,” Geothermal Resources Council, Transactions 11, 155–157 (1987).

Spectrosc. (1)

S. M. Angel, “Optrodes: Chemically Selective Fiber-Optic Sensors,” Spectrosc. 2, 38–47 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Attenuation in dB per km of a typical silica-core, silica-clad fiber vs ln(λ) where λ is in units of μm. Lines drawn have a slope of −86.9 dB, and correspond to a fiber length of 0.10 km. The points at which these lines are tangent to the attenuation curve represent wavelengths at which a Raman signal from a sample will exhibit maxima of amplitude. The maximum Raman signal will occur at the point corresponding to the tangent line with minimum y-intercept. (b) Same data for a 1-km fiber. In this case, the slope of the lines is −8.69 dB, and the maximum signal will correspond to the maximum transmission of the fiber.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S = k I 0 ( λ ex ) T ( λ ex ) R ( λ ex ) T ( λ em ) ,
λ = ( λ ex + λ em ) / 2.
S = k I 0 ( λ ) T 2 ( λ ) R ( λ ) .
d B = L Q ( λ ) = - 10 log T ( λ )
T ( λ ) = 10 - ( L Q ( λ ) / 10 ) .
R ( λ ) = k λ - 4 .
S = k λ - 4 10 - ( L Q ( λ ) / 5 ) .
d S / d λ k = - 4 λ - 5 [ 10 - 1 ( L Q ( λ ) / 5 ) ] - [ L λ - 4 5 ( ln 10 ) 10 - ( L Q ( λ ) / 5 ) ] ( d Q / d λ ) = 0.
d Q ( λ ) / d λ = - 20 / ( L λ ln 10 ) ,
d Q ( λ ) / d ( ln λ ) = - 20 / ( L ln 10 ) = - 8.686 / L .
ln S = - L Q ( λ ) ln ( 10 ) / 5 - 4 ln λ + ln k .
Q ( λ ) = [ - 20 / L ln ( 10 ) ] ( ln λ ) + ( 5 / L ln 10 ) [ ln ( k / S ) ] .

Metrics