Abstract

An optical heterodyne fiber gyro, which we recently proposed, is improved to reduce the zero-point drift. A reference interferometer is introduced in the improved configuration beside the sensing interferometer to obtain the Sagnac phase shift, which monitors the drift caused in the optical system. Experimental results demonstrate successful reduction of the drift.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hotate, “Fiber Optic Gyroscope,” Opt. Devices and Fibers (HOM/North-Holland, Tokyo, 1985), Vol. 17, p. 333.
  2. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “An Overview of Fiber Optic Gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
    [CrossRef]
  3. B. Y. Kim, H. J. Shaw, “Fiber-Optic Gyroscopes,” IEEE Spectrum 23, 54–60 (Mar.1986).
  4. K. Hotate, Y. Yoshida, M. Higashiguchi, N. Niwa, “Fiber-Optic Laser Gyro with Easily Introduced Phase-Difference Bias,” Appl. Opt. 20, 4313–4318 (1981).
    [CrossRef] [PubMed]
  5. K. Hotate, K. Tabe, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Influence of the Earth’s Magnetic Field,” Appl. Opt. 25, 1086–1092 (1986).
    [CrossRef] [PubMed]
  6. K. Tabe, K. Hotate, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect and its Reduction by Use of a Polarizing Fibre,” Opt. Acta 33, 1553–1561 (1986).
    [CrossRef]
  7. K. Hotate, K. Tabe, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Experiment,” J. Lightwave Technol. LT-5, 997–1001 (1987).
    [CrossRef]
  8. J. L. Davis, S. Ezekiel, “Closed-Loop, Low-Noise Fiber-Optic Rotation Sensor,” Opt. Lett. 6, 505–507 (1981).
    [CrossRef] [PubMed]
  9. W. Auch et al. “Fiber-Optic Gyro with Polarization-Preserving Fiber,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany, 1983, p. 2.1.
  10. H. C. Lefevre, Ph. Gaindorge, H. J. Arditty, S. Vatoux, M. Papuchon, “Double Closed-Loop Hybrid Fiber Gyroscope Using Digital Phase Ramp,” presented at Third Int. Conf. Optical Fiber Sensors, San Diego, CA, 1985, postdeadline paper PDS7.
  11. G. A. Pavlath, “Inertial Grade Fiber Gyros,” In Proc. National Technical Meeting of the Institute of Navigation, Santa Barbara, CA, 1988, p. 90.
  12. K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Rotation Detection by Optical Heterodyne Fiber Gyro with Frequency Output,” Opt. Lett. 7, p. 331–333 (1982).
    [CrossRef] [PubMed]
  13. K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro with Frequency Output,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1982, p. 4.1.
  14. K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro,” Journal of the Society of Instrument and Control Engineers 19, 319–326 (1983), (in Japanese).
  15. K. Hotate, M. Higashiguchi, N. Ohgi, Y. Ueno, “Microoptics Optical Heterodyne Fiber Gyro with Drift Compensation,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1984, p. 4.1.
  16. This work has been partly presented at the oral session in the following conference; K. Hotate, S. Samukawa, N. Niwa, “Drift Reduction in the Optical Heterodyne Fiber Gyro,” in Proceedings Fifth International Conference on Optical Fiber Sensors, New Orleans, 1988, p. 397.
  17. R. J. Fredricks, R. Ulrich, “Phase Error Bounds of Fiber Gyro with Imperfect Polariser/Depolariser,” Electron. Lett. 20, 330–332 (1984).
    [CrossRef]

1987 (1)

K. Hotate, K. Tabe, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Experiment,” J. Lightwave Technol. LT-5, 997–1001 (1987).
[CrossRef]

1986 (3)

B. Y. Kim, H. J. Shaw, “Fiber-Optic Gyroscopes,” IEEE Spectrum 23, 54–60 (Mar.1986).

K. Tabe, K. Hotate, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect and its Reduction by Use of a Polarizing Fibre,” Opt. Acta 33, 1553–1561 (1986).
[CrossRef]

K. Hotate, K. Tabe, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Influence of the Earth’s Magnetic Field,” Appl. Opt. 25, 1086–1092 (1986).
[CrossRef] [PubMed]

1984 (2)

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “An Overview of Fiber Optic Gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

R. J. Fredricks, R. Ulrich, “Phase Error Bounds of Fiber Gyro with Imperfect Polariser/Depolariser,” Electron. Lett. 20, 330–332 (1984).
[CrossRef]

1983 (1)

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro,” Journal of the Society of Instrument and Control Engineers 19, 319–326 (1983), (in Japanese).

1982 (1)

1981 (2)

Arditty, H. J.

H. C. Lefevre, Ph. Gaindorge, H. J. Arditty, S. Vatoux, M. Papuchon, “Double Closed-Loop Hybrid Fiber Gyroscope Using Digital Phase Ramp,” presented at Third Int. Conf. Optical Fiber Sensors, San Diego, CA, 1985, postdeadline paper PDS7.

Auch, W.

W. Auch et al. “Fiber-Optic Gyro with Polarization-Preserving Fiber,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany, 1983, p. 2.1.

Bergh, R. A.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “An Overview of Fiber Optic Gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

Davis, J. L.

Ezekiel, S.

Fredricks, R. J.

R. J. Fredricks, R. Ulrich, “Phase Error Bounds of Fiber Gyro with Imperfect Polariser/Depolariser,” Electron. Lett. 20, 330–332 (1984).
[CrossRef]

Gaindorge, Ph.

H. C. Lefevre, Ph. Gaindorge, H. J. Arditty, S. Vatoux, M. Papuchon, “Double Closed-Loop Hybrid Fiber Gyroscope Using Digital Phase Ramp,” presented at Third Int. Conf. Optical Fiber Sensors, San Diego, CA, 1985, postdeadline paper PDS7.

Higashiguchi, M.

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro,” Journal of the Society of Instrument and Control Engineers 19, 319–326 (1983), (in Japanese).

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Rotation Detection by Optical Heterodyne Fiber Gyro with Frequency Output,” Opt. Lett. 7, p. 331–333 (1982).
[CrossRef] [PubMed]

K. Hotate, Y. Yoshida, M. Higashiguchi, N. Niwa, “Fiber-Optic Laser Gyro with Easily Introduced Phase-Difference Bias,” Appl. Opt. 20, 4313–4318 (1981).
[CrossRef] [PubMed]

K. Hotate, M. Higashiguchi, N. Ohgi, Y. Ueno, “Microoptics Optical Heterodyne Fiber Gyro with Drift Compensation,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1984, p. 4.1.

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro with Frequency Output,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1982, p. 4.1.

Hotate, K.

K. Hotate, K. Tabe, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Experiment,” J. Lightwave Technol. LT-5, 997–1001 (1987).
[CrossRef]

K. Hotate, K. Tabe, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Influence of the Earth’s Magnetic Field,” Appl. Opt. 25, 1086–1092 (1986).
[CrossRef] [PubMed]

K. Tabe, K. Hotate, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect and its Reduction by Use of a Polarizing Fibre,” Opt. Acta 33, 1553–1561 (1986).
[CrossRef]

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro,” Journal of the Society of Instrument and Control Engineers 19, 319–326 (1983), (in Japanese).

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Rotation Detection by Optical Heterodyne Fiber Gyro with Frequency Output,” Opt. Lett. 7, p. 331–333 (1982).
[CrossRef] [PubMed]

K. Hotate, Y. Yoshida, M. Higashiguchi, N. Niwa, “Fiber-Optic Laser Gyro with Easily Introduced Phase-Difference Bias,” Appl. Opt. 20, 4313–4318 (1981).
[CrossRef] [PubMed]

K. Hotate, M. Higashiguchi, N. Ohgi, Y. Ueno, “Microoptics Optical Heterodyne Fiber Gyro with Drift Compensation,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1984, p. 4.1.

K. Hotate, “Fiber Optic Gyroscope,” Opt. Devices and Fibers (HOM/North-Holland, Tokyo, 1985), Vol. 17, p. 333.

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro with Frequency Output,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1982, p. 4.1.

This work has been partly presented at the oral session in the following conference; K. Hotate, S. Samukawa, N. Niwa, “Drift Reduction in the Optical Heterodyne Fiber Gyro,” in Proceedings Fifth International Conference on Optical Fiber Sensors, New Orleans, 1988, p. 397.

Kim, B. Y.

B. Y. Kim, H. J. Shaw, “Fiber-Optic Gyroscopes,” IEEE Spectrum 23, 54–60 (Mar.1986).

Lefevre, H. C.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “An Overview of Fiber Optic Gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

H. C. Lefevre, Ph. Gaindorge, H. J. Arditty, S. Vatoux, M. Papuchon, “Double Closed-Loop Hybrid Fiber Gyroscope Using Digital Phase Ramp,” presented at Third Int. Conf. Optical Fiber Sensors, San Diego, CA, 1985, postdeadline paper PDS7.

Niwa, N.

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro,” Journal of the Society of Instrument and Control Engineers 19, 319–326 (1983), (in Japanese).

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Rotation Detection by Optical Heterodyne Fiber Gyro with Frequency Output,” Opt. Lett. 7, p. 331–333 (1982).
[CrossRef] [PubMed]

K. Hotate, Y. Yoshida, M. Higashiguchi, N. Niwa, “Fiber-Optic Laser Gyro with Easily Introduced Phase-Difference Bias,” Appl. Opt. 20, 4313–4318 (1981).
[CrossRef] [PubMed]

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro with Frequency Output,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1982, p. 4.1.

This work has been partly presented at the oral session in the following conference; K. Hotate, S. Samukawa, N. Niwa, “Drift Reduction in the Optical Heterodyne Fiber Gyro,” in Proceedings Fifth International Conference on Optical Fiber Sensors, New Orleans, 1988, p. 397.

Ohgi, N.

K. Hotate, M. Higashiguchi, N. Ohgi, Y. Ueno, “Microoptics Optical Heterodyne Fiber Gyro with Drift Compensation,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1984, p. 4.1.

Okuma, N.

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro,” Journal of the Society of Instrument and Control Engineers 19, 319–326 (1983), (in Japanese).

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Rotation Detection by Optical Heterodyne Fiber Gyro with Frequency Output,” Opt. Lett. 7, p. 331–333 (1982).
[CrossRef] [PubMed]

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro with Frequency Output,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1982, p. 4.1.

Papuchon, M.

H. C. Lefevre, Ph. Gaindorge, H. J. Arditty, S. Vatoux, M. Papuchon, “Double Closed-Loop Hybrid Fiber Gyroscope Using Digital Phase Ramp,” presented at Third Int. Conf. Optical Fiber Sensors, San Diego, CA, 1985, postdeadline paper PDS7.

Pavlath, G. A.

G. A. Pavlath, “Inertial Grade Fiber Gyros,” In Proc. National Technical Meeting of the Institute of Navigation, Santa Barbara, CA, 1988, p. 90.

Samukawa, S.

This work has been partly presented at the oral session in the following conference; K. Hotate, S. Samukawa, N. Niwa, “Drift Reduction in the Optical Heterodyne Fiber Gyro,” in Proceedings Fifth International Conference on Optical Fiber Sensors, New Orleans, 1988, p. 397.

Shaw, H. J.

B. Y. Kim, H. J. Shaw, “Fiber-Optic Gyroscopes,” IEEE Spectrum 23, 54–60 (Mar.1986).

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “An Overview of Fiber Optic Gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

Tabe, K.

K. Hotate, K. Tabe, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Experiment,” J. Lightwave Technol. LT-5, 997–1001 (1987).
[CrossRef]

K. Hotate, K. Tabe, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Influence of the Earth’s Magnetic Field,” Appl. Opt. 25, 1086–1092 (1986).
[CrossRef] [PubMed]

K. Tabe, K. Hotate, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect and its Reduction by Use of a Polarizing Fibre,” Opt. Acta 33, 1553–1561 (1986).
[CrossRef]

Ueno, Y.

K. Hotate, M. Higashiguchi, N. Ohgi, Y. Ueno, “Microoptics Optical Heterodyne Fiber Gyro with Drift Compensation,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1984, p. 4.1.

Ulrich, R.

R. J. Fredricks, R. Ulrich, “Phase Error Bounds of Fiber Gyro with Imperfect Polariser/Depolariser,” Electron. Lett. 20, 330–332 (1984).
[CrossRef]

Vatoux, S.

H. C. Lefevre, Ph. Gaindorge, H. J. Arditty, S. Vatoux, M. Papuchon, “Double Closed-Loop Hybrid Fiber Gyroscope Using Digital Phase Ramp,” presented at Third Int. Conf. Optical Fiber Sensors, San Diego, CA, 1985, postdeadline paper PDS7.

Yoshida, Y.

Appl. Opt. (2)

Electron. Lett. (1)

R. J. Fredricks, R. Ulrich, “Phase Error Bounds of Fiber Gyro with Imperfect Polariser/Depolariser,” Electron. Lett. 20, 330–332 (1984).
[CrossRef]

IEEE Spectrum (1)

B. Y. Kim, H. J. Shaw, “Fiber-Optic Gyroscopes,” IEEE Spectrum 23, 54–60 (Mar.1986).

J. Lightwave Technol. (2)

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “An Overview of Fiber Optic Gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

K. Hotate, K. Tabe, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Experiment,” J. Lightwave Technol. LT-5, 997–1001 (1987).
[CrossRef]

Journal of the Society of Instrument and Control Engineers (1)

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro,” Journal of the Society of Instrument and Control Engineers 19, 319–326 (1983), (in Japanese).

Opt. Acta (1)

K. Tabe, K. Hotate, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect and its Reduction by Use of a Polarizing Fibre,” Opt. Acta 33, 1553–1561 (1986).
[CrossRef]

Opt. Lett. (2)

Other (7)

K. Hotate, M. Higashiguchi, N. Ohgi, Y. Ueno, “Microoptics Optical Heterodyne Fiber Gyro with Drift Compensation,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1984, p. 4.1.

This work has been partly presented at the oral session in the following conference; K. Hotate, S. Samukawa, N. Niwa, “Drift Reduction in the Optical Heterodyne Fiber Gyro,” in Proceedings Fifth International Conference on Optical Fiber Sensors, New Orleans, 1988, p. 397.

K. Hotate, “Fiber Optic Gyroscope,” Opt. Devices and Fibers (HOM/North-Holland, Tokyo, 1985), Vol. 17, p. 333.

W. Auch et al. “Fiber-Optic Gyro with Polarization-Preserving Fiber,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany, 1983, p. 2.1.

H. C. Lefevre, Ph. Gaindorge, H. J. Arditty, S. Vatoux, M. Papuchon, “Double Closed-Loop Hybrid Fiber Gyroscope Using Digital Phase Ramp,” presented at Third Int. Conf. Optical Fiber Sensors, San Diego, CA, 1985, postdeadline paper PDS7.

G. A. Pavlath, “Inertial Grade Fiber Gyros,” In Proc. National Technical Meeting of the Institute of Navigation, Santa Barbara, CA, 1988, p. 90.

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Optical Heterodyne Fiber Gyro with Frequency Output,” in Proceedings Symposium Gyro Technology, Stuttgart, W. Germany1982, p. 4.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic configuration of the optical heterodyne fiber gyro: (a) Optical setup, (b) Electronic circuit for phase-nulling detection with frequency output.

Fig. 2
Fig. 2

Optical setup of the improved optical heterodyne fiber gyro with the reference path for the drift compensation.

Fig. 3
Fig. 3

Signal processing circuit for the improved optical heterodyne fiber gyro.

Fig. 4
Fig. 4

Drift reduction in the improved optical heterodyne fiber gyro. AOM driver having a relatively large frequency fluctuation is used, (a) Drift in the sensing waves, (b) Drift in the reference waves, and (c) Drift of the gyro output.

Fig. 5
Fig. 5

Drift reduction in the improved optical heterodyne fiber gyro. AOM driver with a stabilized frequency is used. Influence of the thermal fluctuation of the acoustic-wave velocity in the AOM is observed. (a) Drift in the signal waves, (b) Drift in the reference waves, and (c) Drift of the gyro output.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f 2 = ( Δ ϕ s + 2 N π - π / 2 ) / 2 π T d ,
f 20 = ( 2 N π - π / 2 ) / 2 π T d = ( N - 1 / 4 ) / T d
Ω = c λ 2 L a T d ( f 2 - f 20 ) = c λ 2 L a T d Δ f 2 ,
Δ Θ = c λ T d 2 L a .
Δ ϕ - γ | δ θ 2 - δ θ 1 2 + t - t 11 | sin ψ - ,
T = ( t 11 t 12 t 21 t 22 )
t - = ( t 12 - t 21 ) / 2

Metrics